Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

Fingerprinting seamless single-walled carbon nanotube junctions via the migration of encapsulated N_2 molecules from bottom to top: are arrays of VA-SWNTs continuous?

Theerapol Thurakitseree,**a Christian Kramberger,* Pisith Singjai,*, Shigeo Maruyama**d,e

^aProgram in Applied Physics, Faculty of Science, Maejo University, Chiang Mai, Thailand, ^bResearch Group Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Vienna, Austria, ^cChiang Mai University, Chiang Mai, Thailand, ^dDepartment of Physics and Materials Science, Faculty of Science, University of Tokyo, Tokyo, Japan, ^eDepartment of Mechanical Engineering, School of Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

*Corresponding Author: theerapol@mju.ac.th, maruyama@photon.t.u-tokyo.ac.jp

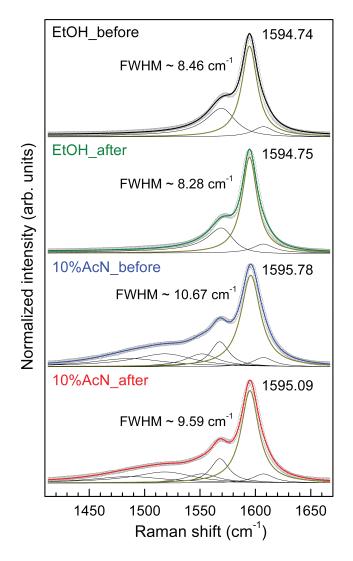


Fig. S1 High frequency G-band spectra of SWNTs before and after removing nanotube cap and annealing. Diminishing in G-band linewidth is due to absence of coulomb interaction from encapsulated N_2 molecules.