Electronic Supplementary Information

A novel fluorescent turn-on biosensor based on QDs@GSH-GO fluorescence resonance energy transfer for sensitive glutathione s-transferases sensing and cellular imaging

Lifang Changa, Xiwen Hea, Langxing Chen*a,b, and Yukui Zhanga,c

aResearch Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
cDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

*Fax: +86-0-22-23502458; E-mail:lxchen@nankai.edu.cn.
Fig. S1 The statistics of Mn-doped ZnS QDs diameters (A) and the zeta potential (B).
Fig. S2 The decay curves of QDs (black line) and QDs-GO (red line) at 607 nm emission.
Fig. S3 Effect of the interaction time between QDs@GSH and GO on the fluorescence intensity. The concentrations of the QDs@GSH and GO were 50 mg L$^{-1}$ and 0.24 mg mL$^{-1}$, respectively.
Fig. S4 Plot of fluorescence emissions (607 nm) against interaction time of the QDs-GO system in the presence of 100 nM GST (A) and 1 nM ATP6V1F (B) in 10 mM PBS (pH = 7.4).
Fig. S5 Linear relationships between the fluorescence intensity and the concentrations of GST in the range of 0.0-10.0 nM (R = 0.996) (A) and ATP6V1F in the range of 0.5-3.0 nM (R = 0.990) (B). The error bars represented the standard deviations of three independent experiments. (C) Fluorescence emission at 607 nm for the QDs@GSH-GO system at different concentrations of GST (0, 0.5, 1.0, 2.0, 4.0, 8.0, 10 nM) added. A linear range of GST could be obtained in the 0.0-10.0 nM (y = 1066.5 + 30.6x, R = 0.996). (D) Fluorescence emission at 607 nm for the QDs@GSH-GO system at different concentrations of ATP6V1F (0.5, 1.0, 1.5, 2.0, 3.0 nM) added. A linear range of ATP6V1F could be obtained in the 0.5-3.0 nM (y = 1442.2 + 88.5x, R = 0.990). The detection limits of the QDs-GO system for both GST and ATP6V1F were then measured to be 2.1×10^{-10} M and 0.72 ×10^{-10} M, respectively. The values were calculated with the equation: detection limit = 3σ/m, where σ is the standard deviation of blank measurement (σ = 2.12, derived from nine measurements (1112, 1116, 1115, 1114, 1118, 1115, 1116, 1114, 1111)), m is the slope between intensity versus sample concentration.
Fig. S6 Fluorescence spectra of urine sample (black), QDs@GSH-GO adding into urine sample (red), QDs@GSH-GO adding into urine sample spiked 0.5 nM ATP6V1F (blue) and 1.0 nM ATP6V1F (pink). All urine samples conducted in this experiment were diluted by 100-fold with 10 mM PBS buffer (pH = 7.4).
<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>τ_1 (ns)</th>
<th>Rel%</th>
<th>τ_2 (ns)</th>
<th>Rel%</th>
<th>τ (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QDs</td>
<td>1.217</td>
<td>0.1337</td>
<td>15.26</td>
<td>2.1872</td>
<td>84.74</td>
<td>1.87</td>
</tr>
<tr>
<td>QDs-GO</td>
<td>1.157</td>
<td>0.5133</td>
<td>47.98</td>
<td>2.1863</td>
<td>52.02</td>
<td>1.38</td>
</tr>
</tbody>
</table>

χ^2 is defined as a coefficient; τ_1 and τ_2 stand for the two different lifetimes of the QDs, respectively; Rel% is the relative amount of the two lifetimes; τ is the average lifetime.