Supporting Information for

Fluorescent cross-linked supramolecular polymers constructed from a novel self-complementary AABB-type heteromultitopic monomer

Le Fang, a Yuanli Hu, b Qiang Li, a Shutao Xu, c Manivannan Kalavathi Dhinakarank, a Weitao Gong,* a and Guiling Ning* a

a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
Fax: +86-411-84986067; E-mail: wtgong@dlut.edu.cn.

b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physic, Chinese Academy of Sciences, Dalian 116023, P. R. China

c National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

Scheme. S1 Synthetic route for compound 1.

Compound 1 and compound 2 were synthesized according to the procedures reported before.[S1-S3]

Scheme. S2 Synthetic route for compound 3

Synthesis of compound 3

To a solution of p-hydroxybenzaldehyde (0.35 g, 2.87 mmol) in DMF (20 mL) was added K₂CO₃ (0.60 g, 4.3 mmol) and KI (0.07 g, 0.43 mmol). After stirring for 0.5 hour under 80°C, compound 2 (2.5 g, 2.87 mmol) in DMF (10 mL) was added dropwise. The reaction mixture was stirred at 80°C for another 10 hours. After cooling to room temperature,
the mixture was filtered through celite and DMF was evaporated under vacuum. Then the residue was dissolved in CH$_2$Cl$_2$ (100 mL), washed with H$_2$O (2×100 mL) and brine (2×100 mL), and dried over anhydrous MgSO$_4$. The organic layer was evaporated under vacuum and subjected to column chromatography on silica gel using CH$_2$Cl$_2$ as the eluent. Compound 3 was obtained as a white solid (1.85 g, 70%). 1H NMR (400 MHz, CDCl$_3$, 298 K) δ 9.89 (s, 1H), 7.82 (d, J = 8.1 Hz, 2H), 6.94 (d, J = 8.2 Hz, 2H), 6.82 – 6.69 (m, 10H), 3.99 (t, J = 5.4 Hz, 2H), 3.91 (d, J = 5.6 Hz, 2H), 3.77 (d, J = 5.1 Hz, 10H), 3.63 (d, J = 15.4 Hz, 27H), 1.92 (m, 4H). 13C NMR (126 MHz, CDCl$_3$, 298K) δ 190.8 (s), 164.1 (s), 150.9-150.6 (m), 149.8 (s), 132.0 (s), 129.9 (s), 128.5 – 128.1 (m), 115.0 (s), 114.8 (s), 114.2-113.8 (m), 77.3 (s), 77.0 (s), 76.8 (s), 67.9 (d, J = 6.3 Hz), 56.0-55.6 (m), 52.9 (s), 29.9-29.3 (m), 26.2 (s), 26.0 (s). MS (MALDI-TOF) calcd for C$_{55}$H$_{60}$O$_{12}$, m/z = 912.4085 [M]+, Found: m/z = 912.4112.
Fig. S1 1H NMR (400 MHz, CDCl$_3$, 298 K) of 3.

Fig. S2 13C NMR (126 MHz, CDCl$_3$, 298 K) of 3.
Fig. S3 MALDI-TOF MS spectrum of 3.

Fig. S4 ¹H NMR (400 MHz, CD₂Cl₂, 298 K) of APOPV.
Fig. S5 13C NMR (126 MHz, CDCl$_3$, 298 K) of APOPV.

Fig. S6 MALDI-TOF MS spectrum of APOPV.
Fig. S7 1H NMR (400 MHz, CDCl$_3$, 298K) of AOPV.

Fig. S8 13C NMR (126 MHz, CDCl$_3$, 298 K) of AOPV.
Fig. S9 MALDI-TOF MS spectrum of AOPV.

2. Supplementary data

Scheme. S3 The structures of APOPV and AOPV.
Fig. S10 Partial 1H NMR spectra (toluene-d$_8$, 400MHz, 298K) of APOPV and AOPV at different concentrations. APOPV: (a) 1.00, (b) 5.00, (c) 10.0, (d) 20.0, (e) 40.0, (f) 60 mM; AOPV: (a’) 1.00, (b’) 5.00, (c’) 10.0, (d’) 20.0, (e’) 40.0, (f’) 60 mM.
Fig. S11 Partial 1H NMR spectra (toluene-d$_8$, 400MHz, 298K) of APOPV and AOPV at different concentrations. APOPV: (a) 1.00, (b) 5.00, (c) 10.0, (d) 20.0, (e) 40.0, (f) 60 mM; AOPV: (a’) 1.00, (b’) 5.00, (c’) 10.0, (d’) 20.0, (e’) 40.0, (f’) 60 mM.
Fig. S12 Diffusion coefficient of AOPV with different concentrations recorded in toluene-d8 at 25 °C.

Fig. S13 UV-Vis spectra of APOPV (a) and AOPV (b) at different concentration.
Fig. S14 The SEM images of **APOPV** solvent in 10^{-3} M.

Fig. S15 The SEM images of **AOPV** solvent in 10^{-3} M.
Fig. S16 Thermogravimetric analysis (TGA) of the supramolecular xerogels of APOPV.

![TGA graph]

Fig. S17 Differential scanning calorimetry (DSC) of the supramolecular xerogels of APOPV.

![DSC graph]
Fig. S18 Partial 1H NMR spectra (toluene-d$_8$, 400MHz, 298K) of APOPV: (a) pure APOPV (5 mM); (b) after addition of 5 μL (25 equiv.) of TFA to a; (c) after addition of 20 μL (55 equiv.) of TEA to b.
Fig. S19 Partial 1H NMR spectra (toluene-d$_8$, 400MHz, 298K) of APOPV: (a) pure APOPV (5 mM); (b) after addition of 5 μL (25 equiv.) of TFA to a; (c) after addition of 20 μL (55 equiv.) of TEA to b.

3. Determination of the associate constants

NMR titrations were performed to determine the binding constants (K_a) between pillar[5]arene (P5A) and alkyl chain (G) in toluene. Therefore we used dimethylpillar[5]arene as host and the concentration of P5A was constant. The 1-dodecyloxy-4-methoxy benzene was synthesized as guest and its concentration was varied. Using the nonlinear curve-fitting method,$[^{S4}]$ the associate constants can be obtained from the following equation:
\[A = \left(A_\infty / [P5A] \right)^* \left(0.5[G] + 0.5([P5A] + 1/K_a) - (0.5\cdot [G]^2 + 2[G](1/K_a-[P5A]) + (1/K_a + [P5A])^2)^{0.5} \right) \]

Where \(A \) is the chemical shift change of H3 on the pillar[5]arene, \(A_\infty \) is the chemical shift change of H3 when the host is completely complexed, [P5A] is the fixed concentration of the host, and [G] is the concentration of the guest 1-dodecyloxy-4-methoxy benzene.

Fig. S20 Partial \(^1\)H NMR spectra (toluene-d\(_8\), 400MHz, 298K) of P5A at a concentration of 2 mM upon addition of the guest 1-dodecyloxy-4-methoxy benzene: (a) 0 mM; (b) 10 mM; (c) 20 mM; (d) 30 mM; (e) 40 mM; (f) 50 mM; (g) 60 mM; (h) 70 mM; (i) 80 mM; (j) 90 mM; (k) 100 mM; (l) 110 mM; (m) 120 mM; (n) 150 mM.
Fig. S21 The non-linear curve-fitting for the complexation of P5A host (2 mM) with guest 1-dodecyloxy-4-methoxy benzene at different concentration.