Supporting Information

Novel strategies for the synthesis of unsymmetrical glycosyl disulfides

Goreti Ribeiro Morais,* Bradley Springett, Martin Pauze, Lisa Schröder, Matthew Northop,
Robert A Falconer*

Institute of Cancer Therapeutics, Life Sciences School, University of Bradford, Bradford, UK

E-Mail: r.a.falconer1@bradford.ac.uk; ribeiro@bradford.ac.uk

General methods - NMR spectra for compounds 6b and 6c were generated on a JEOL ECA-60. NMR spectra for compounds 6a, 7a-7f, 9a, 9e-9g were generated on a Bruker AMX 400. Compounds 9b-9d have been reported previously (Tetrahedron Lett. 2007, 48, 7637-7641).
Figure 1. 1H and 13C NMR spectra for compound 6a.
Figure 2. 1H and 13C NMR spectra for compound 6b.
Figure 3. 1H and 13C NMR spectra for compound 6c.
Figure 4. 1H and 13C NMR spectra for compound 7a.
Figure 5. 1H and 13C NMR spectra for compound 7b.
Figure 6. 1H and 13C NMR spectra for compound 7c.
Figure 7. 1H and 13C NMR spectra for compound 7d.
Figure 8. 1H and 13C NMR spectra for compound 7e.
Figure 9. 1H and 13C NMR spectra for compound 7f.
Figure 10. 1H and 13C NMR spectra for compound 9a.
Figure 11. 1H and 13C NMR spectra for compound 9e. In the 1H NMR spectrum the strong singlet peaks at 1.56 and 2.17 ppm correspond to water and acetone, respectively. In the 13C NMR spectrum the peak at 30.32 ppm corresponds to the methyl carbon of acetone.
Figure 12. 1H and 13C NMR spectra for compound 9f.
Figure 13. 1H and 13C NMR spectra for compound 9g.