Electronic Supplementary Information

Reactivity of alkynylindole-2-carboxamides in [Pd]-catalysed C-H activation and phase transfer catalysis: Formation of pyrrolo-diindolones vs β-carbolinones

R. N. Prasad Tulichala and K. C. Kumara Swamy*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.

E-mail: kckssc@uohyd.ac.in, kckssc@yahoo.com

1 Crystal data for the compounds 9a and 10h

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crystal data for the compounds 9a and 10h</td>
</tr>
<tr>
<td>2</td>
<td>Copies of 1H/13C NMR spectra for starting precursors 5d, 6b, 6d, 7a-k and 8a-o</td>
</tr>
<tr>
<td>3</td>
<td>Copies of 1H/13C NMR spectra for final products 9a-j and 10a-o</td>
</tr>
</tbody>
</table>

S1
(1) Crystal data for the compounds 9a and 10h

X-ray Data. X-ray data for compounds 9a and 10h, were collected using MoK$_\alpha$ ($\lambda = 0.71073$ Å) radiation. The structures were solved and refined by standard methods as mentioned in the main text. The CCDC numbers are 1453189-1453190.

Compound 9a

Red color needle, C$_{31}$H$_{20}$N$_2$O$_2$, $M = 454.51$, Triclinic, Space group P-1, $a = 9.4276(5)$, $b = 11.2761(9)$, $c = 11.6981(10)$ Å, $V = 1137.32(14)$ Å3, $\alpha = 112.674(8)$, $\beta = 90.151(5)$, $\gamma = 96.976(5)$, $Z = 2$, $\mu = 0.660$ mm$^{-1}$, data/restraints/parameters: 4333/0/317, R indices (I> $2\sigma(I)$): R1 = 0.0449, wR2 (all data) = 0.1166, CCDC No. 1453189.

Compound 10h

Colorless block, C$_{26}$H$_{22}$N$_2$O$_2$, $M = 394.46$, Triclinic, Space group P-1, $a = 11.5059(4)$, $b = 12.8459(6)$, $c = 15.6020(8)$ Å, $\alpha = 106.081(4)$, $\beta = 93.226(4)$, $\gamma = 109.728(4)$, $V = 2056.95(16)$ Å3, $Z = 4$, $\mu = 0.643$ mm$^{-1}$, data/restraints/parameters: 7879/0/547, R indices (I> $2\sigma(I)$): R1 = 0.0488, wR2 (all data) = 0.1277, CCDC No. 1453190.
(2) Copies of 1H/13C NMR spectra for starting precursors

Figure S1. 1H NMR spectrum of compound 5d

Figure S2. 13C NMR spectrum of compound 5d
Figure S3. 1H NMR spectrum of compound 6b

Figure S4. 13C NMR spectrum of compound 6b
Figure S5. 1H NMR spectrum of compound 6d

Figure S6. 13C NMR spectrum of compound 6d
Figure S7. 1H NMR spectrum of compound 7a

Figure S8. 13C NMR spectrum of compound 7a
Figure S9. 1H NMR spectrum of compound 7b

Figure S10. 13C NMR spectrum of compound 7b
Figure S11. 1H NMR spectrum of compound 7c

Figure S12. 13C NMR spectrum of compound 7c
Figure S13. 1H NMR spectrum of compound 7d

Figure S14. 13C NMR spectrum of compound 7d
Figure S15. 1H NMR spectrum of compound 7e

Figure S16. 13C NMR spectrum of compound 7e
Figure S17. 1H NMR spectrum of compound 7f

Figure S18. 13C NMR spectrum of compound 7f
Figure S19. 1H NMR spectrum of compound 7g

Figure S20. 13C NMR spectrum of compound 7g
Figure S21. 1H NMR spectrum of compound 7h

Figure S22. 13C NMR spectrum of compound 7h
Figure S23. 1H NMR spectrum of compound 7i

Figure S24. 13C NMR spectrum of compound 7i
Figure S25. 1H NMR spectrum of compound 7j

Figure S26. 13C NMR spectrum of compound 7j
Figure S27. 1H NMR spectrum of compound 7k

Figure S28. 13C NMR spectrum of compound 7k
Figure S29. 1H NMR spectrum of compound 8a

Figure S30. 13C NMR spectrum of compound 8a
Figure S31. 1H NMR spectrum of compound 8b

Figure S32. 13C NMR spectrum of compound 8b
Figure S33. 1H NMR spectrum of compound 8c

Figure S34. 13C NMR spectrum of compound 8c
Figure S35. 1H NMR spectrum of compound 8d

Figure S36. 13C NMR spectrum of compound 8d
Figure S37. 1H NMR spectrum of compound 8e

Figure S38. 13C NMR spectrum of compound 8e
Figure S39. 1H NMR spectrum of compound 8f

Figure S40. 13C NMR spectrum of compound 8f
Figure S41. 1H NMR spectrum of compound 8g

Figure S42. 13C NMR spectrum of compound 8g
Figure S43. 1H NMR spectrum of compound 8h

Figure S44. 13C NMR spectrum of compound 8h
Figure S45. 1H NMR spectrum of compound 8i

Figure S46. 13C NMR spectrum of compound 8i
Figure S47. 1H NMR spectrum of compound 8j

Figure S48. 13C NMR spectrum of compound 8j
Figure S49. 1H NMR spectrum of compound 8k

Figure S50. 13C NMR spectrum of compound 8k
Figure S51. 1H NMR spectrum of compound 8l

Figure S52. 13C NMR spectrum of compound 8l
Figure S53. 1H NMR spectrum of compound 8m

Figure S54. 13C NMR spectrum of compound 8m
Figure S55. 1H NMR spectrum of compound 8n

Figure S56. 13C NMR spectrum of compound 8n
Figure S57. 1H NMR spectrum of compound 8o

Figure S58. 13C NMR spectrum of compound 8o
(2) Copies of $^1\text{H}/^{13}\text{C}$ NMR spectra for pyrrolo diindolones 9a-j and β-Carbolinones 10a-o.

Figure S59. ^1H NMR spectrum of compound 9a

Figure S60. ^{13}C NMR spectrum of compound 9a
Figure S61. 1H NMR spectrum of compound 9b

Figure S62. 13C NMR spectrum of compound 9b
Figure S63. 1H NMR spectrum of compound 9c

Figure S64. 13C NMR spectrum of compound 9c
Figure S65. 1H NMR spectrum of compound 9d

Figure S66. 13C NMR spectrum of compound 9d
Figure S67. 1H NMR spectrum of compound 9e

Figure S68. 13C NMR spectrum of compound 9e
Figure S69. 1H NMR spectrum of compound 9f

Figure S70. 13C NMR spectrum of compound 9f
Figure S71. 1H NMR spectrum of compound 9g

Figure S72. 13C NMR spectrum of compound 9g
Figure S73. 1H NMR spectrum of compound 9h

Figure S74. 13C NMR spectrum of compound 9h
Figure S75. 1H NMR spectrum of compound 9i

Figure S76. 13C NMR spectrum of compound 9i
Figure S77. 1H NMR spectrum of compound 9j

Figure S78. 13C NMR spectrum of compound 9j
Figure S79. 1H NMR spectrum of compound 10a

Figure S80. 13C NMR spectrum of compound 10a
Figure S81. 1H NMR spectrum of compound 10b

Figure S82. 13C NMR spectrum of compound 10b
Figure S83. 1H NMR spectrum of compound 10c

Figure S84. 13C NMR spectrum of compound 10c
Figure S85. 1H NMR spectrum of compound 10d

Figure S86. 13C NMR spectrum of compound 10d
Figure S87. 1H NMR spectrum of compound 10e

Figure S88. 13C NMR spectrum of compound 10e
Figure S89. 1H NMR spectrum of compound 10f

Figure S90. 13C NMR spectrum of compound 10f
Figure S91. 1H NMR spectrum of compound 10g

Figure S92. 13C NMR spectrum of compound 10g
Figure S93. 1H NMR spectrum of compound 10h

Figure S94. 13C NMR spectrum of compound 10h
Figure S95. 1H NMR spectrum of compound 10i

Figure S96. 13C NMR spectrum of compound 10i
Figure S97. 1H NMR spectrum of compound 10j

Figure S98. 13C NMR spectrum of compound 10j
Figure S99. 1H NMR spectrum of compound 10k

Figure S100. 13C NMR spectrum of compound 10k
Figure S101. 1H NMR spectrum of compound 10l

Figure S102. 13C NMR spectrum of compound 10l
Figure S103. 1H NMR spectrum of compound 10m

Figure S104. 13C NMR spectrum of compound 10m
Figure S105. 1H NMR spectrum of compound 10n

Figure S106. 13C NMR spectrum of compound 10n
Figure S107. 1H NMR spectrum of compound 10o

Figure S108. 13C NMR spectrum of compound 10o