A Novel Smart Supramolecular Organic Gelator Exhibiting Dual-channel Responsive Sensing Behaviours towards Fluoride ion via Gel-Gel States

Xiaojun Kuang,[a] and Guiling Ning*[a]

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.

wtgong@dlut.edu.cn, ninggl@dlut.edu.cn

Table of Contents

Figure S1. The presumed self-assembly and stimuli-responsive mechanism and photograph of Sol–gel phase transition of OG, OG-Zn, OG-Zn-F and OG-F in response to thermal and mechanical stimuli.---S1

Figure S1. Photographs of organic gel of OG, OG in the presence of various metal ions and OG-Zn-F in day light and under UV light ---S2

Figure S3. SEM images of xerogels of OG, OG-Zn (1:1), OG-Zn-F (1:1:1) and OG-F (1:1).--------------------S3

Figure S4. Powder XRD patterns of organic gelator and xerogels G-16, OG, OG-Zn, Zn-F and OG-F --S4

Figure S5. Job’s plot of metallogel OG-Zn and fluoride ion for the stoichiometric Complex of

OG–Zn–F and Plot of the linear relationship value of OG-Zn with F- ion.------------------ S5

Figure S6. 1H NMR spectrum of supramolecular organic gelator G-16----------------------------------S6

Figure S7. 13C NMR spectrum of supramolecular organic gelator G-16-----------------------------------S7

Figure S8. Mass spectrum of supramolecular organic gelator G-16--------------------------------------S8
Figure S1. (a) The presumed self-assembly and stimuli-responsive mechanism of OG and metallogel OG-Zn towards fluoride ion. (b) Photograph of Sol–gel phase transition of OG, OG-Zn, OG-Zn-F and OG-F in response to thermal and mechanical stimuli.
Figure S2. Photographs of organogel of OG in DMF 1% w/v and organogel OG in the presence of various metal ions (in DMF, 1%, w/v, using their perchlorate salts as the sources, OG: cation = 1: 1) under (a) Day light (b) UV light.

Figure S3. SEM images of xerogels of OG, OG-Zn (1:1), OG-Zn-F (1:1:1) and OG-F (1:1) (obtained from 1% DMF organogel).
Figure S4. Powder XRD patterns of organic gelator and xerogels (a) G-16 (b) OG xerogel (obtained from 1% DMF organogel) (c) OG-Zn xerogel (obtained from 1% DMF OG : Zn$^{2+}$ = 1 : 1) (d) OG-Zn-F xerogel OG : Zn$^{2+}$: F (1: 1 : 1) (e) OG-F xerogel OG : F (1: 1).

Figure S5. (a) Job’s plot of metallogel OG-Zn and F$^-$ ion which indicated the stoichiometry of OG–Zn –F Complex is 1:1. (b) Plot of the linear relationship value of OG-Zn with F$^-$ ion (Right).
Figure S6. 1H NMR spectrum of supramolecular organic gelator G-16.

Figure S7. 13C NMR spectrum of supramolecular organic gelator G-16.
Figure S8. Mass spectrum of supramolecular organic gelator G-16.