Supporting Information

Visible-Light-Promoted Syntheses of β-Keto Sulfones from Alkynes and Sulfonylhydrazides

Shunyou Cai, Danling Chen, Yaohui Xu, Wen Weng, Lihuang Li, Ruijie Zhang and Mingqiang Huang

a School of Chemistry and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China. E-mail: caishy05@mnnu.edu.cn

b Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.

Table of Contents

(49 Pages)

Materials and methods S2
Identification of the optimal reaction conditions S3
General procedure for β-keto sulfones synthesis S4
Examinations of other alkynes and sulfonylhydrazides S5
1H NMR and 13C NMR spectra data of compounds 3a-3o, 4a-4o S5
Control experiments on reaction parameters S17
1H NMR and 13C NMR spectra data of compound 6 S18
Fluorescence spectra of Ru(bpy)$_3$Cl$_2$ with different concentration of KI S18
Copies of 1H NMR and 13C NMR spectra S19
Materials and methods

All the chemicals were purchased commercially, and used without further purification, unless otherwise noted. Thin-layer chromatography (TLC) was conducted with 0.25 mm Tsingdao silica gel plates (60F-254) and visualized by exposure to UV light (254 nm) or stained with potassium permanganate. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. 1H NMR spectra were recorded on Bruker spectrometers (at 300 or 400 MHz) and were reported relative to deuterated solvent signals. Data for 1H NMR spectra were reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. 13C NMR spectra were recorded on Bruker Spectrometers (at 75 or 100 MHz). Data for 13C NMR spectra were reported in terms of chemical shift. Mass spectrometric data were obtained using Bruker Apex IV RTMS. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.
Identification of the optimal reaction conditions

$$\text{Cl} \quad \equiv \quad + \quad \text{Me} \quad \begin{array}{c} \text{S} \\
\text{O} \\
\text{N} \quad \text{NH}_2
\end{array}$$

$$\text{Cl} \quad \equiv \quad \begin{array}{c} \text{O} \\
\text{S} \\
\text{O} \\
\text{N} \quad \text{NH}_2
\end{array}$$

Photocatalyst, base, additive, solvent, r.t., O_2 (c = 0.07 M, visible light)

<table>
<thead>
<tr>
<th>entry</th>
<th>2a (eq)</th>
<th>[Ru] (mol%)a</th>
<th>base (eq)</th>
<th>solvent (v/v)</th>
<th>additive (eq)</th>
<th>yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>5</td>
<td>/</td>
<td>MeCN</td>
<td>/</td>
<td>NR</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>5</td>
<td>Na_2CO_3 (1.5)</td>
<td>MeCN</td>
<td>/</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>5</td>
<td>Na_2CO_3 (1.5)</td>
<td>MeCN/H_2O (3:1)</td>
<td>/</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>5</td>
<td>Na_2CO_3 (1.5)</td>
<td>MeCN/H_2O (3:1)</td>
<td>NaBr (1.5)</td>
<td>decomp</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>5</td>
<td>Na_2CO_3 (1.5)</td>
<td>MeCN/H_2O (3:1)</td>
<td>KI (1.5)</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>5</td>
<td>NaOAc (1.5)</td>
<td>MeCN/H_2O (3:1)</td>
<td>KI (1.5)</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>5</td>
<td>NaOAc (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.5)</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>5</td>
<td>Na_2HPO_4 (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.5)</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>5</td>
<td>Na_3PO_4 (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.5)</td>
<td>decomp</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>5</td>
<td>Cs_2CO_3 (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.5)</td>
<td>decomp</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>5</td>
<td>pyridine (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.5)</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>1.5</td>
<td>5</td>
<td>NEt_3 (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.5)</td>
<td>NR</td>
</tr>
<tr>
<td>13</td>
<td>1.5</td>
<td>5</td>
<td>DBU (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.5)</td>
<td>decomp</td>
</tr>
<tr>
<td>14</td>
<td>1.5</td>
<td>5</td>
<td>NaOAc (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.0)</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>5</td>
<td>NaOAc (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (0.5)</td>
<td>52</td>
</tr>
<tr>
<td>16</td>
<td>2.2</td>
<td>5</td>
<td>NaOAc (1.5)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.0)</td>
<td>63</td>
</tr>
<tr>
<td>17</td>
<td>2.2</td>
<td>5</td>
<td>NaOAc (2.2)</td>
<td>DMF/H_2O (3:1)</td>
<td>KI (1.0)</td>
<td>72</td>
</tr>
<tr>
<td>18</td>
<td>2.2</td>
<td>5</td>
<td>NaOAc (2.2)</td>
<td>DMF/H_2O (5:1)</td>
<td>KI (1.0)</td>
<td>82</td>
</tr>
<tr>
<td>19</td>
<td>2.2</td>
<td>5</td>
<td>NaOAc (2.2)</td>
<td>DMF/H_2O (8:1)</td>
<td>KI (1.0)</td>
<td>68</td>
</tr>
<tr>
<td>20</td>
<td>2.2</td>
<td>2</td>
<td>NaOAc (2.2)</td>
<td>DMF/H_2O (5:1)</td>
<td>KI (1.0)</td>
<td>84</td>
</tr>
<tr>
<td>21</td>
<td>2.2</td>
<td>2</td>
<td>NaOAc (2.2)</td>
<td>DMSO/H_2O (5:1)</td>
<td>KI (1.0)</td>
<td>trace</td>
</tr>
<tr>
<td>22</td>
<td>2.2</td>
<td>2</td>
<td>NaOAc (2.2)</td>
<td>DMA/H_2O (5:1)</td>
<td>KI (1.0)</td>
<td>58</td>
</tr>
<tr>
<td>23</td>
<td>2.2</td>
<td>2</td>
<td>NaOAc (2.2)</td>
<td>MeOH/H_2O (5:1)</td>
<td>KI (1.0)</td>
<td>35</td>
</tr>
<tr>
<td>24</td>
<td>2.2</td>
<td>2</td>
<td>NaOAc (2.2)</td>
<td>EtOH/H_2O (5:1)</td>
<td>KI (1.0)</td>
<td>48</td>
</tr>
<tr>
<td>25</td>
<td>2.2</td>
<td>2</td>
<td>NaOAc (2.2)</td>
<td>THF/H_2O (5:1)</td>
<td>KI (1.0)</td>
<td>54</td>
</tr>
<tr>
<td>26b</td>
<td>2.2</td>
<td>2</td>
<td>Eosin</td>
<td>NaOAc (2.2)</td>
<td>DMF/H_2O (5:1)</td>
<td>KI (1.0)</td>
</tr>
</tbody>
</table>

a[Ru] = Ru(bpy)_2Cl_2*6H_2O. b2 mol% of Eosin Y was used. cYield of isolated product.
General procedure for β-keto sulfones synthesis

\[
\begin{array}{c}
\text{R}_1\text{C}_6\text{H}_4\text{C}_3\cdots & + & \text{R}_2\text{SO}^\text{N}=\text{NH}_2 \\
1 & & 2 \\
\text{Ru(bpy)}_3\text{Cl}_2 (0.02 \text{eq}), \text{KI} (1.00 \text{eq}), \text{NaOAc} (2.20 \text{eq}), 1 \text{ atm O}_2, \text{DMF/H}_2\text{O} (v/v = 5:1), \text{rt} \\
& & \text{c = 0.07 } M, \text{ visible light} \\
\rightarrow & & \text{R}_1\text{SO} & \text{R}_2 \\
\text{3 or 4} \\
\end{array}
\]

A flame-dried round bottom flask (5 mL) was equipped with magnetic stir bar and charged with alkynes 1 (0.073 mmol, 1.0 equiv), sulfonylhydrazides 2 (0.161 mmol, 2.2 equiv), Ru(bpy)_3Cl_2 (0.0014 mmol, 0.02 equiv), NaOAc (0.161 mmol, 2.2 equiv), KI (0.073 mmol, 1.0 equiv) and DMF/H_2O (v/v = 5:1, 1.0 mL). The mixture was then irradiated by household bulbs (45 W) under a balloon oxygen atmosphere at room temperature until the starting material disappeared from the TLC. After that the reaction mixture was treated with water and extracted with EtOAc, and the combined organic layer was washed with brine and dried over Na_2SO_4. Then the organic layer was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography using hexane/EtOAc (4/1) to afford the desired pure product 3 or 4 in 31-93% yield.
Examinations of other alkynes and sulfonylhydrazides under standard reaction conditions

Other alkynes and sulfonylhydrazides had also been examined. However, we did not obtain the desired products under standard reaction conditions.

1H NMR and 13C NMR spectra data of compounds 3a-3o, 4a-4o

1-(4-chlorophenyl)-2-tosylethanone (3a): 1H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.8 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 7.33 (d, J = 8.4 Hz,
2H), 4.69 (s, 2H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 187.1, 145.6, 141.0, 135.6, 134.1, 130.8, 129.9, 129.2, 128.5, 63.6, 21.7; HRMS calculated for C$_{13}$H$_{13}$ClNaO$_3$S (M + Na$^+$): 331.0172, found: 331.0163. (White solid, 19.0 mg, 84% isolated yield).

![3b](image)

1-(4-fluorophenyl)-2-tosylethanone (3b): 1H NMR (400 MHz, CDCl$_3$) δ 8.01-7.98 (m, 2H), 7.75 (d, $J = 8.4$ Hz, 2H), 7.34 (d, $J = 8.0$ Hz, 2H), 7.17-7.12 (m, 2H), 4.69 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 186.5, 167.7, 165.2, 145.5, 135.6, 132.3, 132.2, 129.9, 128.5, 123.8, 116.2, 115.9, 63.7, 21.7; HRMS calculated for C$_{15}$H$_{13}$FNaO$_3$S (M + Na$^+$): 315.0467, found: 315.0453. (White solid, 17.1 mg, 80% isolated yield).

![3c](image)

1-(3-fluorophenyl)-2-tosylethanone (3c): 1H NMR (400 MHz, CDCl$_3$) δ 7.77 (d, $J = 6.8$ Hz, 3H), 7.62-7.59 (m, 1H), 7.50-7.45 (m, 1H), 7.35-7.30 (m, 3H), 4.69 (s, 2H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 187.1, 164.0, 161.6, 145.6, 137.8, 135.6, 130.6, 130.5, 129.9, 128.6, 125.4, 125.3, 121.6, 121.3, 115.9, 115.7, 63.7, 21.7; HRMS calculated for C$_{15}$H$_{13}$FNaO$_3$S (M + Na$^+$): 315.0467, found: 315.0457. (White solid, 12.6 mg, 59% isolated yield).

![3d](image)
1-(2-fluorophenyl)-2-tosylethanone (3d): 1H NMR (300 MHz, CDCl$_3$) δ 7.83-7.76 (m, 3H), 7.58-7.53 (m, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.26-7.14 (m, 1H), 7.11-7.07 (m, 1H), 7.78 (s, 2H), 2.43 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 186.2, 186.1, 163.6, 160.2, 145.3, 136.2, 136.1, 136.0, 131.2, 131.1, 129.8, 128.6, 124.9, 124.8, 124.6, 117.0, 116.7, 67.2, 67.1, 21.7; HRMS calculated for C$_{15}$H$_{14}$FO$_3$S (M + H$^+$): 293.0648, found: 293.0653. (Pale yellow oil, 15.6 mg, 73% isolated yield).

methyl 4-(2-tosylacetyl)benzoate (3e): 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (d, J = 6.8 Hz, 2H), 8.01 (d, J = 6.8 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 4.74 (s, 2H), 3.95 (s, 3H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 187.9, 165.9, 145.6, 138.8, 134.8, 130.0, 129.9, 129.2, 128.6, 64.8, 52.6, 21.7; HRMS calculated for C$_{17}$H$_{16}$NaO$_3$S (M + Na$^+$): 355.0616, found: 355.0610. (Pale yellow solid, 17.5 mg, 72% isolated yield).

1-phenyl-2-tosylestanone (3f): 1H NMR (400 MHz, CDCl$_3$) δ 7.95 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 6.8 Hz, 2H), 7.63-7.59 (m, 1H), 7.49-7.45 (m, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.72 (s, 2H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 188.2, 145.4, 135.8, 134.3, 129.8, 129.3, 128.8, 128.6, 63.5, 21.7; HRMS calculated for C$_{15}$H$_{14}$NaO$_3$S (M + Na$^+$): 297.0561, found: 297.0551. (White solid, 18.2 mg, 91% isolated yield).
1-p-tolyl-2-tosylethanone (3g): 1H NMR (400 MHz, CDCl$_3$) δ 7.84 (d, $J = 8.0$ Hz, 2H), 7.76 (d, $J = 8.40$ Hz, 2H), 7.33 (d, $J = 8.4$ Hz, 2H), 7.27 (d, $J = 8.0$ Hz, 2H), 4.69 (s, 2H), 2.43 (s, 3H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 187.7, 145.6, 145.3, 135.8, 133.4, 129.8, 129.6, 129.5, 128.6, 63.5, 21.8, 21.7; HRMS calculated for C$_{16}$H$_{17}$O$_3$S (M + H$^+$): 289.0898, found: 289.0895. (White solid, 17.7 mg, 84% isolated yield).

1-m-tolyl-2-tosylethanone (3h): 1H NMR (400 MHz, CDCl$_3$) δ 7.77-7.71 (m, 4H), 7.41 (m, 1H), 7.36-7.32 (m, 1H), 7.26 (s, 2H), 4.70 (s, 2H), 2.44 (s, 3H), 2.40 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 188.3, 145.3, 138.7, 135.8, 135.1, 129.8, 129.7, 128.7, 128.6, 126.6, 63.6, 21.7, 21.3; HRMS calculated for C$_{16}$H$_{17}$O$_3$S (M + H$^+$): 289.0898, found: 289.0894. (Pale yellow solid, 18.7 mg, 89% isolated yield).

1-(4-ethylphenyl)-2-tosylethanone (3i): 1H NMR (400 MHz, CDCl$_3$) δ 7.87 (d, $J = 8.4$ Hz, 2H), 7.76 (d, $J = 8.4$ Hz, 2H), 7.33-7.26 (m, 4H), 4.69 (s, 2H), 2.73-2.68 (q, $J = 7.6$ Hz, 2H), 2.43 (s, 3H), 1.27-1.23 (t, $J = 7.6$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 187.6, 151.6, 145.3, 135.8, 133.6, 129.8, 129.6, 128.6, 128.4, 63.5, 29.0, 21.7, 15.0; HRMS calculated for C$_{17}$H$_{19}$O$_3$S (M + H$^+$): 303.1055, found: 303.1059.
(White solid, 20.3 mg, 92% isolated yield).

1-(4-propylphenyl)-2-tosylethanone (3j): 1H NMR (300 MHz, CDCl$_3$) δ 7.87 (d, $J = 8.4$ Hz, 2H), 7.70 (d, $J = 8.4$ Hz, 2H), 7.34 (d, $J = 8.1$ Hz, 2H), 7.28 (d, $J = 8.1$ Hz, 2H), 4.69 (s, 2H), 2.67-2.62 (t, $J = 7.2$ Hz, 2H), 2.43 (s, 3H), 1.69-1.62 (m, 2H), 0.97-0.92 (t, $J = 7.5$ Hz, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 187.7, 150.2, 145.3, 135.8, 133.6, 129.8, 129.5, 129.0, 128.6, 63.5, 33.1, 24.1, 21.7, 13.8; HRMS calculated for C$_{18}$H$_{20}$NaO$_3$S (M + Na$^+$): 339.1031, found: 339.1025. (Pale yellow solid, 21.2 mg, 92% isolated yield).

1-(4-pentylphenyl)-2-tosylethanone (3k): 1H NMR (400 MHz, CDCl$_3$) δ 7.87 (d, $J = 8.0$ Hz, 2H), 7.77 (d, $J = 8.4$ Hz, 2H), 7.34 (d, $J = 8.0$ Hz, 2H), 7.28 (d, $J = 8.4$ Hz, 2H), 4.69 (s, 2H), 2.68-2.64 (t, $J = 7.6$ Hz, 2H), 2.44 (s, 3H), 1.67-1.59 (m, 2H), 1.34-1.31 (m, 4H), 0.91-0.88 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 187.7, 150.5, 145.3, 135.8, 133.5, 129.8, 129.5, 128.9, 128.6, 63.5, 36.0, 31.4, 30.6, 22.5, 21.7, 14.0; HRMS calculated for C$_{20}$H$_{25}$O$_3$S (M + H$^+$): 345.1524, found: 345.1506. (White solid, 23.4 mg, 93% isolated yield).
1-(4-methoxyphenyl)-2-tosylethanone (3l): 1H NMR (400 MHz, CDCl$_3$) δ 7.95 (d, J = 10.0 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.33-7.26 (m, 2H), 6.96 (d, J = 9.6 Hz, 2H), 4.66 (s, 2H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 186.4, 164.6, 145.3, 135.8, 131.9, 129.8, 128.9, 128.6, 114.1, 63.6, 55.6, 21.7; HRMS calculated for C$_{16}$H$_{17}$O$_4$S (M + H$^+$): 305.0848, found: 305.0834. (White solid, 20.2 mg, 91% isolated yield).

1-(4-chlorophenyl)-2-(4-methoxyphenylsulfonyl)ethanone (3m): 1H NMR (400 MHz, CDCl$_3$) δ 7.92 (d, J = 9.2 Hz, 2H), 7.79 (d, J = 7.2 Hz, 2H), 7.48 (d, J = 9.2 Hz, 2H), 7.00 (d, J = 6.8 Hz, 2H), 4.68 (s, 2H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 187.2, 164.3, 141.1, 134.1, 130.3, 130.0, 129.2, 124.4, 63.9, 55.7, 29.7; HRMS calculated for C$_{15}$H$_{13}$ClNaO$_4$S (M + Na$^+$): 347.0121, found: 347.0124. (White solid, 21.3 mg, 90% isolated yield).

1-(4-chlorophenyl)-2-(phenylsulfonyl)ethanone (3n): 1H NMR (400 MHz, CDCl$_3$) δ 7.90-7.87 (m, 4H), 7.70-7.66 (m, 1H), 7.58-7.54 (m, 2H), 7.47 (d, J = 6.8 Hz, 2H), 4.71 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 186.9, 141.2, 138.5, 134.4, 134.0, 130.8, 129.3, 129.2, 128.5, 63.6; These data are consistent with literature values, see: A. K. Singh, R. Chawla, T. Keshari, V. K. Yadav, L. D. S. Yadav, *Org. Biomol. Chem.* 2014, *12*, 8550. (Pale yellow solid, 17.4 mg, 81% isolated yield).
1-(4-chlorophenyl)-2-(4-chlorophenylsulfonyl)ethanone (3o): 1H NMR (400 MHz, CDCl$_3$) δ 7.91 (d, $J = 6.8$ Hz, 1H), 7.83 (d, $J = 6.8$ Hz, 1H), 7.54 (d, $J = 6.8$ Hz, 1H), 7.49 (d, $J = 6.8$ Hz, 1H), 4.71 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 186.8, 141.4, 141.3, 136.8, 133.9, 130.7, 130.1, 129.6, 129.3, 63.4; HRMS calculated for C$_{14}$H$_{10}$Cl$_2$NaO$_3$S (M + Na$^+$): 350.9625, found: 350.9620. (White solid, 18.3 mg, 76% isolated yield).

1-(4-methoxyphenyl)-2-(phenylsulfonyl)ethanone (4a): 1H NMR (400 MHz, CDCl$_3$) δ 7.93-7.87 (m, 4H), 7.66-7.62 (m, 1H), 7.55-7.51 (m, 2H), 6.94-6.91 (dd, $J = 7.2$, 2.0 Hz, 2H), 4.69 (s, 2H), 3.86 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 186.2, 164.6, 138.8, 134.2, 131.9, 129.2, 128.8, 128.5, 114.1, 63.4, 55.6; HRMS calculated for C$_{15}$H$_{15}$O$_4$S (M + H$^+$): 291.0691, found: 291.0684. (White solid, 19.7 mg, 93% isolated yield).

1-(4-methoxyphenyl)-2-(naphthalen-2-ylsulfonyl)ethanone (4b): 1H NMR (400 MHz, CDCl$_3$) δ 8.44 (s, 1H), 7.99 (s, 1H), 7.97-7.94 (m, 4H), 7.93-7.91 (m, 2H), 7.87
(d, J = 8.4 Hz, 1H), 7.69-7.65 (m, 1H), 7.63-7.59 (m, 1H), 6.92 (d, J = 10.0 Hz, 2H),
4.76 (s, 2H), 3.85 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 186.2, 164.6, 135.7, 135.5,
132.0, 131.9, 130.6, 129.6, 129.5, 129.4, 128.9, 128.0, 127.7, 123.0, 114.1, 63.5, 55.6;
HRMS calculated for C19H16NaO4S (M + Na⁺): 363.0667, found: 363.0654. (White solid, 22.6 mg, 91% isolated yield).

1-(4-methoxyphenyl)-2-(o-tolylsulfonyl)ethanone (4c): 1H NMR (400 MHz, CDCl3)
δ 7.96 (d, J = 8.6 Hz, 2H), 7.89 (d, J = 7.6 Hz, 1H), 7.53-7.49 (m, 1H), 7.35-7.30 (m,
2H), 6.96 (d, J = 8.6 Hz, 2H), 4.70 (s, 2H), 3.88 (s, 3H), 2.72 (s, 3H); 13C NMR (100
MHz, CDCl3) δ 186.1, 164.6, 138.4, 137.0, 134.2, 132.8, 132.0, 130.5, 129.0, 126.6,
114.1, 62.9, 55.6, 20.6; HRMS calculated for C16H17O4S (M + H⁺): 305.0848, found:
305.0856. (White solid, 20.0 mg, 90% isolated yield).

2-(4-tert-butylphenylsulfonyl)-1-(4-methoxyphenyl)ethanone (4d): 1H NMR (400
MHz, CDCl3) δ 7.92 (d, J = 8.8 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz,
2H), 6.93 (d, J = 8.8 Hz, 2H), 4.67 (s, 2H), 3.87 (s, 3H), 1.33 (s, 9H); 13C NMR (100
MHz, CDCl3) δ 186.2, 164.4, 158.0, 135.8, 131.8, 128.9, 128.3, 126.1, 113.9, 63.4,
55.5, 35.2, 30.9; HRMS calculated for C19H22NaO4S (M + Na⁺): 369.1136, found:
369.1070. (White solid, 23.2 mg, 92% isolated yield).
1-(4-methoxyphenyl)-2-(4-methoxyphenylsulfonyl)ethanone (4e): 1H NMR (400 MHz, CD$_3$COCD$_3$) δ 7.93 (d, $J = 10.0$ Hz, 2H), 7.79 (d, $J = 9.6$ Hz, 2H), 6.98 (d, $J = 10.0$ Hz, 2H), 6.94 (d, $J = 10.8$ Hz, 2H), 4.65 (s, 2H), 3.86 (s, 3H), 3.85 (s, 2H); 13C NMR (100 MHz, CD$_3$COCD$_3$) δ 186.5, 164.5, 164.1, 131.9, 130.8, 130.2, 128.9, 114.3, 114.1, 63.7, 55.7, 55.6; HRMS calculated for C$_{16}$H$_{16}$NaO$_5$S ($M + Na^+$): 343.0616, found: 343.0606. (White solid, 19.4 mg, 83% isolated yield).

N-(4-(2-(4-methoxyphenyl)-2-oxoethylsulfonyl)phenyl)acetamide (4f): 1H NMR (400 MHz, CDCl$_3$) δ 7.98 (d, $J = 6.8$ Hz, 2H), 7.85-7.78 (m, 4H), 7.02 (d, $J = 8.8$ Hz, 2H), 4.91 (s, 2H), 3.89 (s, 3H), 2.13 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 205.4, 185.6, 163.8, 161.3, 141.4, 133.5, 131.7, 129.6, 129.3, 113.4, 113.8, 62.9, 55.2, 29.5, 29.3, 29.1, 29.0, 28.8, 28.6, 28.4, 23.5; HRMS calculated for C$_{17}$H$_{17}$NNaO$_5$S ($M + Na^+$): 370.0725, found: 370.0705. (White solid, 22.3 mg, 88% isolated yield).

1-(4-methoxyphenyl)-2-(4-(trifluoromethoxy)phenylsulfonyl)ethanone (4g): 1H NMR (400 MHz, CDCl$_3$) δ 7.95-7.90 (m, 4H), 7.36 (d, $J = 8.0$ Hz, 2H), 6.96 (d, $J = 8.8$ Hz, 2H), 4.70 (s, 2H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 186.0, 164.7, 153.2, 136.8, 131.7, 130.9, 128.6, 120.6, 114.1, 63.2, 55.6; HRMS calculated for
C_{16}H_{13}F_{3}NaO_{5}S (M + Na+): 397.0333, found: 397.0309. (White solid, 18.0 mg, 66% isolated yield).

2-(4-fluorophenylsulfonyl)-1-(4-methoxyphenyl)ethanone (4h): 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.93-7.88 (m, 4H), 7.26-7.18 (m, 2H), 6.96 (d, \(J = 10.8\) Hz, 2H), 4.69 (s, 2H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 186.2, 167.4, 164.7, 134.7, 131.9, 131.7, 131.6, 128.7, 116.6, 116.4, 114.2, 63.4, 55.6; HRMS calculated for C_{15}H_{13}FNaO_{4}S (M + Na+): 331.0416, found: 331.0404. (White solid, 19.6 mg, 87% isolated yield).

1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenylsulfonyl)ethanone (4i): 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.04 (d, \(J = 8.4\) Hz, 2H), 7.92 (d, \(J = 6.8\) Hz, 2H), 7.82 (d, \(J = 8.4\) Hz, 2H), 6.96 (d, \(J = 6.8\) Hz, 2H), 4.73 (s, 2H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 186.9, 164.8, 131.8, 129.4, 128.8, 128.6, 127.0, 126.3, 126.2, 126.1, 114.2, 63.0, 55.7; HRMS calculated for C_{16}H_{14}F_{3}O_{4}S (M + H+): 359.0565, found: 359.0547. (White solid, 21.4 mg, 82% isolated yield).
2-(4-bromophenylsulfonyl)-1-(4-methoxyphenyl)ethanone (4j): 1H NMR (400 MHz, CDCl$_3$) δ 7.93 (d, J = 7.2 Hz, 2H), 7.75 (d, J = 8.8 Hz, 2H), 7.69 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 7.2 Hz, 2H), 4.68 (s, 2H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 186.1, 164.7, 137.5, 132.5, 131.9, 130.2, 129.6, 128.7, 114.2, 63.3, 55.7; HRMS calculated for C$_{15}$H$_{13}$BrNaO$_4$S (M + Na$^+$): 390.9616, found: 390.9611. (White solid, 21.0 mg, 78% isolated yield).

2-(4-chlorophenylsulfonyl)-1-(4-methoxyphenyl)ethanone (4k): 1H NMR (300 MHz, CDCl$_3$) δ 7.94 (d, J = 6.9 Hz, 2H), 7.83 (d, J = 6.6 Hz, 2H), 7.53 (d, J = 6.6 Hz, 2H), 6.97 (d, J = 6.9 Hz, 2H), 4.69 (s, 2H), 3.89 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 186.1, 164.7, 141.1, 137.0, 131.9, 130.2, 129.5, 128.6, 114.2, 63.3, 55.7; HRMS calculated for C$_{15}$H$_{13}$ClNaO$_4$S (M + Na$^+$): 347.0121, found: 347.012. (White solid, 19.4 mg, 82% isolated yield).

4-(2-(4-methoxyphenyl)-2-oxoethylsulfonyl)benzonitrile (4l): 1H NMR (400 MHz, CDCl$_3$) δ 8.03 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 4.73 (s, 2H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 185.8, 164.9, 142.6, 132.9, 131.8, 129.5, 128.4, 127.0, 117.9, 117.1, 114.3, 62.9, 55.7; HRMS calculated for C$_{16}$H$_{13}$NNaO$_4$S (M + Na$^+$): 338.0463, found: 338.0452. (Yellow solid, 16.3 mg, 71% isolated yield).
1-(4-methoxyphenyl)-2-(4-nitrophensulfonylethanone (4m): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.39 (d, \(J = 6.8\) Hz, 2H), 8.11 (d, \(J = 6.8\) Hz, 2H), 7.92 (d, \(J = 8.8\) Hz, 2H), 6.97 (d, \(J = 8.8\) Hz, 2H), 4.76 (s, 2H), 3.89 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 185.8, 164.9, 151.0, 144.1, 131.8, 130.3, 128.4, 124.3, 114.3, 62.9, 55.7; HRMS calculated for C\(_{15}\)H\(_{13}\)NNaO\(_6\)S (M + Na\(^+\)) 358.0361, found: 358.0385. (White solid, 15.7 mg, 32% isolated yield).

2-(butylsulfonyl)-1-(4-methoxyphenylethanone (4n): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.00 (d, \(J = 8.8\) Hz, 2H), 6.98 (d, \(J = 8.8\) Hz, 2H), 4.51 (s, 2H), 3.88 (s, 3H), 3.25 (t, \(J = 8.0\) Hz, 2H), 1.90-1.83 (m, 2H), 1.51-1.46 (m, 2H), 0.98-0.94(t, \(J = 6.8\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 187.5, 164.8, 131.9, 128.8, 114.2, 59.4, 55.7, 53.4, 23.8, 21.6, 13.5; HRMS calculated for C\(_{13}\)H\(_{19}\)O\(_4\)S (M + H\(^+\)) 271.1004, found: 271.0991. (Pale yellow oil, 17.0 mg, 86% isolated yield).

1-(4-methoxyphenyl)-2-(thiophen-2-ylsulfonylethanone (4o): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.94 (d, \(J = 7.2\) Hz, 2H), 7.74-7.21 (m, 1H), 7.68-7.67 (m, 1H), 7.14-7.11 (m, 1H), 6.96 (d, \(J = 6.8\) Hz, 2H), 4.77 (s, 2H), 3.88 (s, 3H); \(^{13}\)C NMR (100 MHz,
CDCl$_3$ δ 186.0, 164.6, 139.4, 135.4, 134.9, 131.8, 128.7, 127.9, 114.1, 64.3, 55.6; HRMS calculated for C$_{13}$H$_{12}$NaO$_4$S$_2$ (M + Na$^+$): 319.0075, found: 319.0046. (Pale yellow oil, 14.5 mg, 67% isolated yield).

Control experiments on reaction parameters

Control experiments on reaction parameters.

1H NMR and 13C NMR spectra data of compound 6

![Chemical structure of compound 6]

1-phenyl-2-tosylvinyl acetate (6): 1H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.0 Hz, 2H), 7.47-7.45 (m, 3H), 7.44 (d, J = 7.2, 2H), 7.39-7.34 (m, 2H), 6.64 (s, 1H), 2.44 (s, 3H), 2.39 (s, 3H); 13C NMR (100 MHz, CDCl₃) δ 167.8, 156.2, 144.7, 138.6, 132.2, 131.6, 129.9, 129.0, 127.6, 126.1, 117.3, 21.7, 20.9; HRMS calculated for C₁₇H₁₆NO₄S (M + Na⁺): 339.0667, found: 339.0619.

Fluorescence spectra of Ru(bpy)₃Cl₂ with different concentration of KI

![Fluorescence spectra graph]

Concentration of Ru(bpy)₃Cl₂: 1.1 μmol/L;
Concentration of KI: 0.0; 0.1; 0.2; 0.4 mmol/mL.
Copies of 1H NMR and 13C NMR spectra
S42
4k

MeO

^{1}H NMR (400 MHz, CDCl$_3$):

δ 7.80 (s, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.20 (t, J = 7.8 Hz, 1H), 7.12 (t, J = 7.2 Hz, 1H), 3.80 (s, 3H)

^{13}C NMR (100 MHz, CDCl$_3$):

δ 162.74, 161.93, 141.05, 131.78, 128.87, 128.60, 128.46, 125.00, 114.19, 69.61, 55.68