Supporting Information

Directing Activator-Assisted Regio- and Oxidation State-Selective Aerobic Oxidation of Secondary C(sp³)–H Bonds in Aliphatic Alcohols

Jizhi Ni, Jun Ozawa, Kounosuke Oisaki,* and Motomu Kanai*

Graduate School of Pharmaceutical Sciences, The University of Tokyo
Kanai Life Science Catalysis Project, ERATO, Japan Science Technology Agency,
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Phone: +81-3-5841-4835 (Oisaki); +81-3-5841-4830 (Kanai)
Fax: +81-3-5684-5206
Email: oisaki@mol.f.u-tokyo.ac.jp (Oisaki); kanai@mol.f.u-tokyo.ac.jp (Kanai)

Contents

1. General Method ... S-1
2. Experimental Details ... S-2
3. Analytical Data .. S-6
1. General Method

1H NMR spectra were recorded on JEOL ECX500 (500 MHz for 1H NMR and 125 MHz for 13C NMR), and JEOL ECS400 (400 MHz for 1H NMR, 100 MHz for 13C NMR and 400 MHz for 19F NMR) spectrometer. Proton and carbon chemical shifts are reported relative to the solvent used as an internal reference. Fluorine chemical shifts are reported relative to trifluoroacetic acid ($\delta \sim 76.55$ ppm) as an external reference. Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. ESI-MS spectra were measured on a JEOL JMS-T100LC AccuTOF spectrometer (for HRMS). Column chromatographies were performed with silica gel Merck 60 (230-400 mesh ASTM). The ratios of regioisomers were determined by HPLC analysis (JASCO HPLC systems; pump: PU-2080; detector: UV-2075, measured at 254 nm; column: CHIRALPAK AD-H or Inertsil® diol column; mobile phase: 2-propanol/hexane or chloroform/hexane). All reactions other than substrates synthesis were carried out in normal solvents without any purification (purchased from Aldrich or Wako Pure Chemical Industries, Ltd.) unless otherwise noted. Other reagents of which preparation is not described in this manuscript were purchased from Aldrich, Tokyo Chemical Industry Co., Ltd. (TCI), Kanto Chemical Co., Inc., and Wako Pure Chemical Industries, Ltd., and used without further purification. NMR yields were calculated by 1H NMR of crude products using 1,1,2,2-tetrachloroethane as an internal standard.
2. Experimental Details

Table S1. NOx source screening

<table>
<thead>
<tr>
<th>Entry</th>
<th>reactant (equiv)</th>
<th>combined yield (%)</th>
<th>ratio (2a/3a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NO gas (ca. 3)</td>
<td>46</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>HNO3 (3)</td>
<td>23</td>
<td>1.3</td>
</tr>
<tr>
<td>3</td>
<td>t-BuONO (1)[b]</td>
<td>54</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>t-BuONO (2)[b]</td>
<td>51</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>t-BuONO (3)[b]</td>
<td>43</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>KNO2 (5) + TFA (5)</td>
<td>50</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>AgNO2 (5) + TFA (5)</td>
<td>50</td>
<td>1.3</td>
</tr>
<tr>
<td>8</td>
<td>NaNO2 (5) + TFA (5)</td>
<td>63</td>
<td>1.5</td>
</tr>
<tr>
<td>9</td>
<td>NaNO2 (10) + TFA (50)[c]</td>
<td>45</td>
<td>2.7</td>
</tr>
<tr>
<td>10</td>
<td>KNO2 (10) + TFA (10)[c]</td>
<td>61</td>
<td>1.6</td>
</tr>
<tr>
<td>11</td>
<td>AgNO2 (10) + TFA (10)[c]</td>
<td>74</td>
<td>1.6</td>
</tr>
<tr>
<td>12</td>
<td>NaNO2 (10) + TFA (10)[c]</td>
<td>72</td>
<td>1.6</td>
</tr>
<tr>
<td>13</td>
<td>AgNO3 (5) + TFA (5)</td>
<td>trace</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>NaNO3 (5) + TFA (5)</td>
<td>trace</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>NaNO2 (5)</td>
<td>32</td>
<td>1.3</td>
</tr>
<tr>
<td>16</td>
<td>TFA (5)</td>
<td>trace</td>
<td>-</td>
</tr>
</tbody>
</table>

[a] NMR Yield. [b] Slowly added over 8 h. [c] TFA was slowly added over 8 h. TFA = trifluoroacetic acid, TFE = 2,2,2-trifluoroethanol
Table S2. Temperature effect

<table>
<thead>
<tr>
<th>Entry</th>
<th>temp. (°C)</th>
<th>combined yield (%)[a]</th>
<th>ratio (2a/3a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>15</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>63</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>62</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>62</td>
<td>1.0</td>
</tr>
</tbody>
</table>

[a] NMR yield. TFA = trifluoroacetic acid, TFE = 2,2,2-trifluoroethanol

![Chemical structure diagram](image)
<table>
<thead>
<tr>
<th>Entry</th>
<th>acid (x equiv)</th>
<th>combined yield (%)</th>
<th>ratio (2a/3a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeSO$_3$H (10)</td>
<td>41</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>H$_2$SO$_4$ (10)</td>
<td>30</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>BzOH (10)</td>
<td>43</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>BzOH (5)</td>
<td>71</td>
<td>1.7</td>
</tr>
<tr>
<td>5</td>
<td>BzOH (3)</td>
<td>62</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>4-F-BzOH (5)</td>
<td>63</td>
<td>1.6</td>
</tr>
<tr>
<td>7</td>
<td>3-Cl-BzOH (5)</td>
<td>76</td>
<td>1.7</td>
</tr>
<tr>
<td>8</td>
<td>2-Cl-BzOH (5)</td>
<td>70</td>
<td>1.8</td>
</tr>
<tr>
<td>9</td>
<td>3-NO$_2$-BzOH (5)</td>
<td>77</td>
<td>1.6</td>
</tr>
<tr>
<td>10</td>
<td>4-MeO-BzOH (5)</td>
<td>78</td>
<td>1.6</td>
</tr>
<tr>
<td>11</td>
<td>3,5-diCl-BzOH (5)</td>
<td>69</td>
<td>1.8</td>
</tr>
<tr>
<td>12</td>
<td>2,6-diCl-BzOH (5)</td>
<td>78</td>
<td>1.8</td>
</tr>
<tr>
<td>13</td>
<td>2-NO$_2$-BzOH (5)</td>
<td>78</td>
<td>1.8</td>
</tr>
<tr>
<td>14</td>
<td>3-NO$_2$-BzOH (5)</td>
<td>77</td>
<td>1.7</td>
</tr>
<tr>
<td>15</td>
<td>ClCH$_2$CO$_2$H (5)</td>
<td>61</td>
<td>1.9</td>
</tr>
<tr>
<td>16</td>
<td>Cl$_2$CH$_2$CO$_2$H (5)</td>
<td>48</td>
<td>1.9</td>
</tr>
<tr>
<td>17</td>
<td>Cl$_3$CCO$_2$H (5)</td>
<td>72</td>
<td>1.6</td>
</tr>
</tbody>
</table>

[a] NMR Yield. TFE = 2,2,2-trifluoroethanol.
Preparation of substrates

Substrates 1a-1k were prepared according to our reported procedure.¹

Representative procedure for regio- and oxidation state-selective methylene oxygenation

To a dry test tube (ca. 18 mL volume) with a stirring bar, 1a (28.9 mg, 0.1 mmol), NaNO₂ (34.5 mg, 0.5 mmol) and 2,6-dichlorobenzoic acid (95.5 mg, 0.5 mmol) were added. The tube was capped with a three-way stopcock, and the inside atmosphere was replaced to oxygen (1 atm). Then 2,2,2-trifluoroethanol (2 mL) was added via a syringe. The tube was immediately sealed tightly and the resulting mixture was stirred on a heated metal block (40 °C). During this process, white solid gradually appeared and the reaction mixture turned light yellow. After stirring for 20 h, the mixture was cooled to room temperature and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc/HCO₂H = 80/40/1) to give the oxidation products 2a (white solid, 15.9 mg) and 3a (colorless oil, 8.1 mg).

Removal of the nitro group

![Chemical reaction diagram]

To a solution of nitrate 2a (17.5 mg, 0.05 mmol) in methanol (0.5 mL), Pd/C (10 wt%, 1.8 mg) was added and the mixture was vigorously stirred under hydrogen atmosphere (1 atm) at room temperature. After 2a was consumed (ca. 2 h), the reaction mixture was filtered over Celite pad and evaporated in vacuo to give the desired product as white solid (14.5 mg, 95%).

Removal of the directing activator

![Chemical reaction diagram]

To a round-bottom flask dried by a heating gun under reduced pressure were added 4 (30.5 mg, 0.1 mmol) and dry THF (0.5 mL, 0.2 M), and the mixture was cooled at 0 °C. LiAlH$_4$ (7.6 mg, 0.2 mmol) was added to the reaction mixture carefully. After two hours, water (20 μL) and 2.0 M NaOH (20 μL) were added successively to the reaction mixture, with vigorous stirring being kept. Insoluble materials were removed by Celite filtration and the filtrate was dried under reduced pressure to obtain the crude mixture. Purification by silica gel column chromatography (hexane/EtOAc = 1/2) afforded butane-1,3-diol as slightly yellow oil (6.7 mg, 74%).
3. Analytical Data

Full spectroscopic data were described for new compounds. Analytically pure samples of each nitrate product diastereomer (dr 1:1) were obtained after preparative HPLC separation.

6-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)hexanenitrile (1g)

![Chemical Structure](image)

1H NMR (500 MHz, CDCl$_3$) δ 9.77 (brs, 1H), 7.80 (d, J = 7.4 Hz, 1H), 7.67 (dd, J = 11.8, 4.2 Hz, 1H), 7.61 (m, 2H), 3.41 (dt, J = 8.4, 6.0 Hz, 1H), 3.01 (dt, J = 8.4, 6.0 Hz, 1H), 2.36 (t, J = 7.0 Hz, 2H), 1.75 – 1.61 (m, 4H), 1.61 – 1.44 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 165.80, 134.86, 133.38, 131.64, 129.77, 123.95, 123.92, 121.78 (q, J = 283.8 Hz), 119.64, 90.85 (q, J = 33.4 Hz), 63.70, 27.99, 25.05, 24.86, 16.93; 19F NMR (400 MHz, CDCl$_3$) δ –78.96; IR (neat, cm$^{-1}$) 3194, 2949, 2252, 1717, 1615, 1469, 1197, 1082, 729; HRMS (ESI): m/z calcd for C$_{15}$H$_{15}$F$_3$N$_2$O$_3$Na [M+Na]$^+$ 351.0927, Found 351.0923.

2-(6-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)hexyl)isoindoline-1,3-dione (1h)

![Chemical Structure](image)

1H NMR (392 MHz, CDCl$_3$) δ 9.67 (brs, 1H), 7.88 – 7.74 (m, 3H), 7.74 – 7.50 (m, 5H), 3.64 (t, J = 6.6 Hz, 2H), 3.47 – 3.26 (m, 1H), 3.05 – 2.83 (m, 1H), 1.80 – 1.46 (m, 4H), 1.46 – 1.12 (m, 4H); 13C NMR (123 MHz, CDCl$_3$) δ 168.51, 165.62, 135.12, 133.89, 133.21, 131.97, 131.48, 129.96, 124.00, 123.85, 123.16, 121.85 (q, J = 285.5 Hz), 90.91 (q, J = 32.9 Hz), 64.08, 37.77, 28.79, 28.36, 26.34, 25.30; 19F NMR (400 MHz, CDCl$_3$) δ –78.79; IR (neat, cm$^{-1}$) 3163, 2944, 2863, 2254, 1771, 1712, 1200, 909, 733; HRMS (ESI): m/z calcd for C$_{23}$H$_{21}$F$_3$N$_2$O$_5$Na [M+Na]$^+$ 485.1295, Found 485.1293.

6-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)hexyl acetate (1i)

![Chemical Structure](image)

1H NMR (500 MHz, CDCl$_3$) δ 9.84 (brs, 1H), 7.76 (d, J = 7.4 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.59 – 7.50 (m, 2H), 4.07 – 3.85 (m, 2H), 3.44 – 3.28 (m, 1H), 3.00 – 2.85 (m, 1H), 1.97 (s, 3H), 1.71 – 1.45 (m, 4H), 1.45 – 1.09 (m, 4H); 13C NMR (126 MHz, CDCl$_3$) δ 171.56, 165.51, 134.97, 133.13, 131.40, 129.88,
123.84, 123.69, 121.80 (q, \(J = 286.6 \) Hz), 90.79 (q, \(J = 32.8 \) Hz), 64.39, 63.95, 28.65, 28.19, 25.34, 25.28, 20.69; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta = 78.88 \); IR (neat, cm\(^{-1}\)) 3153, 2945, 2359, 2253, 1717, 1265, 1201, 910, 733, 650; HRMS (ESI): m/z calcd for C\(_{17}\)H\(_{20}\)F\(_3\)NO\(_5\)Na [M+Na]\(^+\) 398.1186, Found 398.1192.

methyl 7-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)heptanoate (1j)

\[\text{\begin{figure}[h] \centering \includegraphics[width=0.3\textwidth]{methyl_7-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)heptanoate.png} \caption{Methyl 7-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)heptanoate (1j).} \end{figure}} \]

\(^1\)H NMR (392 MHz, CDCl\(_3\)) \(\delta = 7.80 \) (d, \(J = 7.3 \) Hz, 1H), 7.68 – 7.56 (m, 3H), 3.64 (s, 3H), 3.43 – 3.26 (m, 1H), 3.01 – 2.88 (m, 1H), 2.81 – 2.22 (m, 2H), 1.67 – 1.50 (m, 4H), 1.44 – 1.16 (m, 4H); \(^{13}\)C NMR (123 MHz, CDCl\(_3\)) \(\delta = 174.56, 165.70, 135.12, 133.25, 131.51, 129.91, 124.00, 123.90, 121.85 \) (q, \(J = 286.3 \) Hz), 90.93 (q, \(J = 33.1 \) Hz), 64.13, 51.54, 33.86, 28.88, 28.56, 25.36, 24.63; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta = -78.87 \); IR (neat, cm\(^{-1}\)) 3179, 2948, 2864, 2255, 1716, 1470, 1190, 912, 729; HRMS (ESI): m/z calcd for C\(_{17}\)H\(_{20}\)F\(_3\)NO\(_5\)Na [M+Na]\(^+\) 398.1186, Found 398.1192.

3-((3,3-dimethylpentyl)oxy)-2-hydroxy-3-(trifluoromethyl)isoindolin-1-one (1k)

\[\text{\begin{figure}[h] \centering \includegraphics[width=0.3\textwidth]{3-((3,3-dimethylpentyl)oxy)-2-hydroxy-3-(trifluoromethyl)isoindolin-1-one.png} \caption{3-((3,3-dimethylpentyl)oxy)-2-hydroxy-3-(trifluoromethyl)isoindolin-1-one (1k).} \end{figure}} \]

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta = 9.68 \) (brs, 1H), 7.80 (d, \(J = 7.3 \) Hz, 1H), 7.70 – 7.65 (m, 1H), 7.64 – 7.57 (m, 2H), 3.54 – 3.40 (m, 1H), 3.09 – 2.94 (m, 1H), 1.71 – 1.46 (m, 2H), 1.24 – 1.08 (m, 2H), 0.80 (s, 3H+3H), 0.76 (t, \(J = 7.5 \) Hz, 3H); \(^{13}\)C NMR (123 MHz, CDCl\(_3\)) \(\delta = 165.83, 135.27, 133.23, 131.49, 129.98, 123.99, 123.92, 121.88 \) (q, \(J = 286.4 \) Hz), 91.05 (q, \(J = 66.3, 33.5 \) Hz), 61.63, 39.75, 34.47, 32.14, 26.78, 26.75, 8.26; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta = -78.94 \); IR (neat, cm\(^{-1}\)) 3154, 2962, 2254, 1716, 1202, 909, 734; HRMS (ESI): m/z calcd for C\(_{16}\)H\(_{20}\)F\(_3\)NO\(_3\)Na [M+Na]\(^+\) 354.1287, Found 354.1296.

4-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)butan-2-yl nitrate (2a)

\[\text{\begin{figure}[h] \centering \includegraphics[width=0.3\textwidth]{4-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)butan-2-yl_nitrate.png} \caption{4-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)butan-2-yl nitrate (2a).} \end{figure}} \]

HPLC: Inertsil® diol column, eluent: hexane/IPA = 60/1, flow rate: 9.5 mL/min, retention time 117 min and 130 min.
[for less polar diastereomer] white solid; 1H NMR (500 MHz, CDCl$_3$) δ 9.37 (brs, 1H), 7.81 (d, $J = 7.1$ Hz, 1H), 7.69 – 7.61 (m, 2H), 7.53 (d, $J = 7.4$ Hz, 1H), 5.44 – 5.28 (m, 1H), 3.59 – 3.41 (m, 1H), 3.17 – 3.01 (m, 1H), 2.11 – 1.99 (m, 1H), 1.98 – 1.83 (m, 1H), 1.43 (d, $J = 6.2$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 165.84, 134.68, 133.72, 131.87, 129.70, 124.11, 123.67, 121.74 (q, $J = 285.0$ Hz), 90.76 (q, $J = 33.3$ Hz), 77.74, 59.69, 33.35, 18.74; 19F NMR (400 MHz, CDCl$_3$) δ –78.90; IR (neat, cm$^{-1}$) 2926, 1716, 1623, 1507, 1279, 1199, 864; HRMS (ESI): m/z calcd for C$_{13}$H$_{13}$F$_3$N$_2$O$_6$Na $[M+Na]^+$ 373.0618, Found 373.0600.

[for more polar diastereomer] white solid; 1H NMR (500 MHz, CDCl$_3$) δ 8.63 (brs, 1H), 7.88 – 7.79 (m, 1H), 7.71 – 7.65 (m, 1H), 7.66 – 7.46 (m, 2H), 5.37 – 5.25 (m, 1H), 3.52 – 3.40 (m, 1H), 3.15 – 3.03 (m, 1H), 2.07 – 1.82 (m, 2H), 1.41 (d, $J = 6.4$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 165.55, 134.64, 133.52, 131.88, 129.75, 124.29, 123.96, 78.20, 60.18, 33.48, 18.90; 19F NMR (400 MHz, CDCl$_3$) δ –78.90; IR (neat, cm$^{-1}$) 2987, 1716, 1624, 1507, 1266, 1200, 897; HRMS (ESI): m/z calcd for C$_{13}$H$_{13}$F$_3$N$_2$O$_6$Na $[M+Na]^+$ 373.0618, Found 373.0600.

4-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)-4-methylpentan-2-yl nitrate (2b)

HPLC: Inertsil® diol column, eluent: hexane/IPA = 60/1, flow rate: 9.5 mL/min, retention time 74 min and 79 min.

[for less polar diastereomer] white solid; 1H NMR (500 MHz, CDCl$_3$) δ 8.82 (brs, 1H), 7.82 (d, $J = 7.2$ Hz, 1H), 7.71 – 7.59 (m, 3H), 5.68 – 5.53 (m, 1H), 2.03 (dd, $J = 15.3$, 3.2 Hz, 1H), 1.82 (dd, $J = 15.3$, 7.5 Hz, 1H), 1.47 (d, $J = 6.3$ Hz, 3H), 1.10 (s, 3H), 1.06 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 165.14, 137.38, 133.10, 131.58, 129.35, 125.04, 124.07, 80.55, 78.34, 47.50, 27.88, 26.90, 20.29; 19F NMR (400 MHz, CDCl$_3$) δ –79.95; IR (neat, cm$^{-1}$) 3054, 2986, 1716, 1624, 1507, 1266, 1200, 897; HRMS (ESI): m/z calcd for C$_{15}$H$_{17}$F$_3$N$_2$O$_6$Na $[M+Na]^+$ 401.0931, Found 401.0944.

[for more polar diastereomer] white solid; 1H NMR (500 MHz, CDCl$_3$) δ 7.84 (d, $J = 6.8$ Hz, 1H), 7.69 – 7.61 (m, 3H), 5.64 – 5.56 (m, 1H), 1.92 (dd, $J = 15.1$, 4.3 Hz, 1H), 1.82 (dd, $J = 15.1$, 6.6 Hz, 1H), 1.47 (d, $J = 6.3$ Hz, 3H), 1.23 (s, 3H), 1.00 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 164.95, 136.76, 132.76, 131.64, 129.78, 125.39, 124.14, 80.90, 78.27, 48.51, 29.47, 24.42, 20.22; 19F NMR (400 MHz, CDCl$_3$) δ –80.23; IR (neat, cm$^{-1}$) 2985, 2852, 1716, 1623, 1267, 1196, 874, 741; HRMS (ESI): m/z calcd for C$_{15}$H$_{17}$F$_3$N$_2$O$_6$Na $[M+Na]^+$ 401.0931, Found 401.0944.

4-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)-3,3-dimethylbutan-2-yl nitrate (2c)
HPLC: Inertsil® diol column, eluent: hexane/IPA = 60/1, flow rate: 9.5 mL/min, retention time 64 min and 78 min.

[for less polar diastereomer] white solid; 1H NMR (400 MHz, CDCl$_3$) δ 9.47 (brs, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.71 – 7.59 (m, 2H), 7.47 (d, J = 7.4 Hz, 1H), 5.31 (q, J = 6.5 Hz, 1H), 3.15 (d, J = 8.4 Hz, 1H), 2.86 (d, J = 8.4 Hz, 1H), 1.37 (d, J = 6.5 Hz, 3H), 1.09 (s, 3H), 0.91 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 165.84, 134.61, 133.77, 131.77, 129.63, 124.02, 123.67, 121.78 (q, J = 283.8 Hz), 90.54 (q, J = 33.4 Hz), 82.79, 69.03, 38.01, 21.62, 19.53, 13.38; 19F NMR (400 MHz, CDCl$_3$) δ –79.05; IR (neat, cm$^{-1}$) 2973, 1716, 1624, 1277, 1200, 877, 737; HRMS (ESI): m/z calcd for C$_{15}$H$_{17}$F$_3$N$_2$O$_6$Na $[M+Na]^+$ 401.0931, Found 401.0916.

[for more polar diastereomer] white solid; 1H NMR (400 MHz, CDCl$_3$) δ 9.47 (brs, 1H), 7.83 (d, J = 7.1 Hz, 1H), 7.72 – 7.54 (m, 3H), 5.22 (q, J = 6.4 Hz, 1H), 3.35 – 3.23 (m, 1H), 2.76 – 2.63 (m, 1H), 1.31 (d, J = 6.4 Hz, 3H), 1.00 (s, 3H), 0.99 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 165.57, 134.66, 133.46, 131.79, 129.84, 124.21, 123.85, 121.81 (q, J = 290.9 Hz), 90.52 (q, J = 33.4 Hz), 83.13, 69.32, 38.04, 21.42, 20.00, 13.71; 19F NMR (400 MHz, CDCl$_3$) δ –78.90; IR (neat, cm$^{-1}$) 2925, 1716, 1625, 1278, 1200, 877, 737; HRMS (ESI): m/z calcd for C$_{15}$H$_{17}$F$_3$N$_2$O$_6$Na $[M+Na]^+$ 401.0931, Found 401.0952.

5-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)-3-(nitrooxy)pentyl acetate (2d)

HPLC: Inertsil® diol column, eluent: hexane/IPA = 20/1, flow rate: 9.5 mL/min, retention time 93 min and 98 min.

[for less polar diastereomer] colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 9.47 (brs, 1H), 7.83 (d, J = 7.2 Hz, 1H), 7.70 – 7.62 (m, 2H), 7.56 (d, J = 7.4 Hz, 1H), 5.54 – 5.37 (m, 1H), 4.31 – 4.11 (m, 2H), 3.60 – 3.42 (m, 1H), 3.19 – 3.06 (m, 1H), 2.20 – 2.03 (m, 6H), 2.02 – 1.93 (m, 1H); 13C NMR (125 MHz, CDCl$_3$) δ 171.13, 165.78, 134.51, 133.70, 131.90, 129.73, 124.17, 123.79, 121.72 (q, J = 286.4 Hz), 90.76 (q, J = 33.4 Hz), 78.40, 60.20, 59.54, 31.89, 31.68, 20.79; 19F NMR (400 MHz, CDCl$_3$) δ –78.90; IR (neat, cm$^{-1}$) 2986, 1734, 1716, 1635, 1276, 1200, 766, 710; HRMS (ESI): m/z calcd for C$_{16}$H$_{17}$F$_3$N$_2$O$_6$Na $[M+Na]^+$ 445.0829, Found 445.0845.

[for more polar diastereomer] colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.85 (d, J = 7.4 Hz, 1H),

S-10
7.72 – 7.59 (m, 3H), 5.42 – 5.38 (m, 1H), 4.25 – 4.16 (m, 2H), 3.54 – 3.43 (m, 1H), 3.21 – 3.11 (m, 1H), 2.21 – 2.14 (m, 1H), 2.11 – 1.96 (m, 6H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 171.13, 165.77, 134.47, 133.53, 131.90, 129.77, 124.28, 124.01, 121.73 (q, \(J = 286.6\) Hz), 90.72 (q, \(J = 33.4\) Hz), 79.15, 60.21, 60.17, 32.00, 32.00, 20.79; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.90; IR (neat, cm\(^{-1}\)) 2897, 1734, 1717, 1634, 1265, 1240, 1200, 740, 704; HRMS (ESI): m/z calcd for C\(_{16}\)H\(_{17}\)F\(_3\)N\(_2\)O\(_8\)Na \([M+Na]^+\) 445.0829, Found 445.0831.

1-(1,3-dioxoisindolin-2-yl)-5-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)pentan-3-yl nitrate (2e)

![Structure of 2e](image)

HPLC: Inertsil® diol column, eluent: hexane/IPA = 10/1, flow rate: 9.5 mL/min, retention time 107 min and 116 min.

[for less polar diastereomer] colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.89 – 7.81 (m, 3H), 7.76 – 7.73 (m, 2H), 7.67 – 7.48 (m, 3H), 5.35 – 5.22 (m, 1H), 3.90 – 3.77 (m, 2H), 3.52 – 3.33 (m, 1H), 3.19 – 3.03 (m, 1H), 2.27 – 2.14 (m, 1H), 2.12 – 2.06 (m, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 168.40, 165.48, 134.46, 134.25, 133.61, 131.89, 131.79, 129.86, 124.25, 123.96, 123.51, 122.84, 90.81 (q, \(J = 33.3\) Hz), 78.80, 59.60, 34.01, 31.64, 30.86; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.71; IR (neat, cm\(^{-1}\)) 2919, 1716, 1635, 1276, 1189, 1125, 723; HRMS (ESI): m/z calcd for C\(_{22}\)H\(_{18}\)F\(_3\)N\(_3\)O\(_8\)Na \([M+Na]^+\) 532.0938, Found 532.0929.

[for more polar diastereomer] white solid; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.66 (brs, 1H), 7.88 – 7.83 (m, 3H), 7.76 – 7.71 (m, 2H), 7.67 – 7.60 (m, 2H), 7.55 (d, \(J = 7.1\) Hz, 1H), 5.35 – 5.25 (m, 1H), 3.94 – 3.75 (m, 2H), 3.50 – 3.46 (m, 1H), 3.19 – 3.10 (m, 1H), 2.23 – 2.17 (m, 1H), 2.15 – 2.02 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 168.43, 165.35, 134.33, 134.17, 133.52, 131.91, 131.87, 129.78, 124.33, 124.10, 123.41, 80.11, 60.48, 34.02, 31.93, 31.57; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.68; IR (neat, cm\(^{-1}\)) 2927, 1716, 1635, 1265, 1202, 909, 738; HRMS (ESI): m/z calcd for C\(_{22}\)H\(_{18}\)F\(_3\)N\(_3\)O\(_8\)Na \([M+Na]^+\) 532.0938, Found 532.0954.

methyl 6-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)-4-(nitrooxy)hexanoate (2f)

![Structure of 2f](image)

HPLC: Inertsil® diol column, eluent: hexane/IPA = 20/1, flow rate: 9.5 mL/min, retention time
87 min and 95 min.

[for less polar diastereomer] colorless oil; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.45 (brs, 1H), 7.88 (d, \(J = 7.6\) Hz, 1H), 7.72 – 7.62 (m, 2H), 7.58 (d, \(J = 6.8\) Hz, 1H), 5.38 – 5.32 (m, 1H), 3.73 (s, 3H), 3.47 – 3.41 (m, 1H), 3.26 – 3.12 (m, 1H), 2.57 – 2.35 (m, 2H), 2.20 – 2.09 (m, 1H), 2.09 – 1.97 (m, 1H), 1.95 – 1.82 (m, 2H); \(^1^C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.74, 165.21, 134.36, 133.55, 131.88, 129.99, 124.32, 124.09, 79.98, 59.51, 52.31, 32.10, 29.19, 27.18; \(^1^F\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.53; IR (neat, cm\(^{-1}\)) 3055, 1716, 1624, 1265, 1020, 740, 706; HRMS (ESI): m/z calcd for C\(_{16}\)H\(_{17}\)F\(_3\)N\(_2\)O\(_8\)Na \([M+Na]^+\) 445.0829, Found 445.0831.

[for more polar diastereomer] colorless oil; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.90 (d, \(J = 6.8\) Hz, 1H), 7.72 – 7.61 (m, 3H), 5.24 – 5.13 (m, 1H), 3.73 (s, 3H), 3.46 – 3.40 (m, 1H), 3.28 – 3.23 (m, 1H), 2.51 – 2.48 (m, 2H), 2.39 – 2.32 (m, 1H), 2.04 – 1.93 (m, 3H); \(^1^C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.81, 165.28, 134.25, 133.42, 131.88, 130.03, 124.38, 124.21, 81.37, 60.38, 52.23, 31.98, 29.26, 27.65; \(^1^F\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.50; IR (neat, cm\(^{-1}\)) 3055, 1716, 1624, 1265, 1200, 896, 740, 705; HRMS (ESI): m/z calcd for C\(_{16}\)H\(_{17}\)F\(_3\)N\(_2\)O\(_8\)Na \([M+Na]^+\) 445.0829, Found 445.0831.

1-cyano-5-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)pentan-3-yl nitrate (2g)

HPLC: Inertsil® diol column, eluent: hexane/IPA = 5/1, flow rate: 9.5 mL/min, retention time 43 min and 45 min.

[for less polar diastereomer] colorless oil; \(^1^H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.85 (d, \(J = 7.3\) Hz, 1H), 7.72 – 7.61 (m, 3H), 5.24 – 5.13 (m, 1H), 3.73 (s, 3H), 3.46 – 3.40 (m, 1H), 3.28 – 3.23 (m, 1H), 2.54 (t, \(J = 7.1\) Hz, 2H), 2.30 – 2.20 (m, 1H), 2.18 – 2.05 (m, 2H), 2.04 – 1.98 (m, 1H); \(^1^C\) NMR (125 MHz, CDCl\(_3\)) \(\delta\) 165.79, 134.32, 133.82, 132.02, 129.62, 124.29, 123.83, 118.37, 79.09, 59.51, 31.57, 28.28, 13.39; \(^1^F\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.93; IR (neat, cm\(^{-1}\)) 3053, 2986, 1716, 1623, 1265, 1201, 896, 739; HRMS (ESI): m/z calcd for C\(_{15}\)H\(_{14}\)F\(_3\)N\(_3\)O\(_6\)Na \([M+Na]^+\) 412.0727, Found 412.0727.

[for more polar diastereomer] colorless oil; \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.01 (brs, 1H), 7.86 (d, \(J = 7.3\) Hz, 1H), 7.73 – 7.62 (m, 3H), 5.38 – 5.30 (m, 1H), 3.55 – 3.44 (m, 1H), 3.22 – 3.17 (m, 1H), 2.54 (t, \(J = 7.7\) Hz, 2H), 2.35 – 2.20 (m, 1H), 2.17 – 2.10 (m, 1H), 2.10 – 1.97 (m, 2H); \(^1^C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 165.75, 134.27, 133.69, 132.04, 129.65, 124.39, 124.03, 121.66 (q, \(J = 290.2\) Hz), 118.45, 90.65 (q, \(J = 33.4\) Hz), 79.78, 60.07, 31.58, 28.67, 13.31; \(^1^F\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.93; IR (neat, cm\(^{-1}\)) 3055, 2925, 1716, 1624, 1265, 1201, 896, 742; HRMS (ESI): m/z calcd for C\(_{15}\)H\(_{14}\)F\(_3\)N\(_3\)O\(_6\)Na \([M+Na]^+\) 412.0727, Found 412.0727.
6-(1,3-dioxoisouloindin-2-yl)-1-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)hexan-3-yl nitrate (2ha)

HPLC: Inertsil® diol column, eluent: hexane/IPA = 5/1, flow rate: 9.5 mL/min, retention time 41 min and 45 min.

[for less polar diastereomer] colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 9.09 (brs, 1H), 7.92 – 7.86 (m, 2H), 7.76 – 7.70 (m, 2H), 7.69 – 7.60 (m, 2H), 7.54 (d, J = 7.4 Hz, 1H), 5.45 – 5.32 (m, 1H), 3.74 (t, J = 6.4 Hz, 2H), 3.46 (dt, J = 9.3, 5.0 Hz, 1H), 3.09 (td, J = 9.3, 3.7 Hz, 1H), 2.07 – 2.01 (m, 1H), 1.95 – 1.88 (m, 1H), 1.86 – 1.71 (m, 4H); 13C NMR (125 MHz, CDCl$_3$) δ 168.57, 165.52, 134.54, 134.17, 133.61, 131.85, 131.84, 129.84, 124.15, 123.84, 123.43, 90.81 (q, J = 33.1 Hz), 80.31, 59.58, 37.24, 31.97, 29.98, 24.09; 19F NMR (400 MHz, CDCl$_3$) δ –78.74; IR (neat, cm$^{-1}$) 2927, 1716, 1625, 1267, 1191, 738; HRMS (ESI): m/z calcd for C$_{23}$H$_{20}$F$_3$N$_3$O$_8$Na $[M+Na]^+$ 546.1095, Found 546.1107.

[for more polar diastereomer] colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 8.94 (brs, 1H), 7.91 – 7.81 (m, 3H), 7.75 – 7.67 (m, 3H), 7.65 – 7.60 (m, 2H), 5.32 – 5.21 (m, 1H), 3.79 – 3.66 (m, 2H), 3.64 – 3.42 (m, 1H), 3.19 – 3.08 (m, 1H), 2.07 – 1.91 (m, 2H), 1.91 – 1.69 (m, 4H); 13C NMR (125 MHz, CDCl$_3$) δ 168.51, 165.49, 134.50, 134.09, 133.48, 131.90, 131.84, 129.86, 124.25, 124.02, 123.37, 90.72 (q, J = 32.4 Hz), 81.25, 60.33, 37.29, 31.92, 30.16, 24.14; 19F NMR (400 MHz, CDCl$_3$) δ –78.80; IR (neat, cm$^{-1}$) 2923, 1713, 1628, 1277, 1190, 877, 721; HRMS (ESI): m/z calcd for C$_{23}$H$_{20}$F$_3$N$_3$O$_8$Na $[M+Na]^+$ 546.1095, Found 546.1072.

6-(1,3-dioxoisouloindin-2-yl)-1-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)hexan-3-yl nitrate (2hb)

HPLC: Inertsil® diol column, eluent: hexane/IPA = 5/1, flow rate: 9.5 mL/min, retention time 41 min and 45 min.

[diastereo mixture (dr1:1)] colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.89 – 7.84 (m, 3H), 7.77 – 7.71 (m, 2H), 7.70 – 7.58 (m, 3H), 5.21 – 5.02 (m, 1H), 3.92 – 3.73 (m, 2H), 3.41 – 3.37 (m, 1H), 3.12 – 2.99 (m, 1H), 2.13 – 2.02 (m, 2H), 2.02 – 1.92 (m, 1H), 1.92 – 1.71 (m, 3H); 13C NMR (125 MHz,
CDCl$_3$ δ 168.51, 168.45, 165.36, 134.80, 134.30, 134.23, 133.37, 131.81, 131.76, 131.72, 130.01, 124.10, 123.56, 123.50, 90.88 (q, J = 33.0 Hz), 81.57, 81.17, 63.85, 62.97, 34.10, 34.05, 31.45, 31.33, 29.43, 28.75, 24.34; 19F NMR (400 MHz, CDCl$_3$) δ –78.68, –78.77; IR (neat, cm$^{-1}$) 2924, 1716, 1624, 1266, 1190, 875, 738, 705; HRMS (ESI): m/z calcd for C$_{23}$H$_{20}$F$_3$N$_3$O$_8$Na $[M+Na]^+$ 546.1095, Found 546.1075.

6-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)-4-(nitrooxy)hexyl acetate (2ia)

![Structure of 2ia](image)

HPLC: Inertsil$^®$ diol column, eluent: hexane/IPA = 5/1, flow rate: 9.5 mL/min, retention time 14 min; AD-H column, eluent: hexane/IPA = 10/1, flow rate: 9.5 mL/min, retention time 54 min.

[for less polar diastereomer] colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.82 (d, J = 7.3 Hz, 1H), 7.74 – 7.60 (m, 1H), 7.55 (d, J = 7.4 Hz, 1H), 5.43 – 5.31 (m, 1H), 4.15 – 4.01 (m, 2H), 3.55 – 3.44 (m, 1H), 3.16 – 3.05 (m, 1H), 2.14 – 2.02 (m, 1H), 2.07 (s, 3H) 1.96 – 1.88 (m, 1H), 1.88 – 1.82 (m, 1H), 1.82 – 1.71 (m, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 171.35, 165.76, 134.56, 133.69, 131.87, 129.74, 124.13, 123.77, 121.74 (q, J = 285.9 Hz), 90.76 (q, J = 33.5 Hz), 80.63, 63.73, 59.67, 31.81, 29.40, 24.07, 20.87; 19F NMR (400 MHz, CDCl$_3$) δ –78.90; IR (neat, cm$^{-1}$) 2959, 1733, 1716, 1635, 1270, 1191, 872, 732; HRMS (ESI): m/z calcd for C$_{17}$H$_{19}$F$_3$N$_2$O$_8$Na $[M+Na]^+$ 459.0986, Found 459.0977.

[for more polar diastereomer] colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 8.97 (brs, 1H), 7.85 (d, J = 7.4 Hz, 1H), 7.71 – 7.60 (m, 3H), 5.32 – 5.25 (m, 1H), 4.14 – 4.00 (m, 2H), 3.53 – 3.41 (m, 1H), 3.19 – 3.11 (m, 1H), 2.06 (s, 3H), 2.04 – 1.93 (m, 2H), 1.93 – 1.86 (m, 1H), 1.84 – 1.71 (m, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 171.34, 165.65, 134.51, 133.52, 131.90, 129.79, 124.28, 124.00, 121.77 (q, J = 286.5 Hz), 90.70 (q, J = 33.5 Hz), 81.53, 63.75, 60.37, 31.89, 29.63, 24.15, 20.87; 19F NMR (400 MHz, CDCl$_3$) δ –78.90; IR (neat, cm$^{-1}$) 2986, 1732, 1716, 1631, 1265, 1201, 876, 703; HRMS (ESI): m/z calcd for C$_{17}$H$_{19}$F$_3$N$_2$O$_8$Na $[M+Na]^+$ 459.0986, Found 459.0992.

6-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)-3-(nitrooxy)hexyl acetate (2ib)

![Structure of 2ib](image)

HPLC: Inertsil$^®$ diol column, eluent: hexane/IPA = 5/1, flow rate: 9.5 mL/min, retention time 18 min; AD-H column, eluent: hexane/IPA = 10/1, flow rate: 9.5 mL/min, retention time 35 min.
For less polar diastereomer] colorless oil; ^1^H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.85 (d, J = 7.6 Hz, 1H), 7.71 – 7.60 (m, 3H), 5.24 – 5.17 (m, 1H), 4.27 – 4.14 (m, 2H), 3.42 – 3.32 (m, 1H), 3.12 – 3.03 (m, 1H), 2.08 (s, 3H), 2.07 – 1.99 (m, 2H), 1.96 – 1.86 (m, 1H), 1.86 – 1.67 (m, 3H); ^13^C NMR (125 MHz, CDCl\textsubscript{3}) δ 171.27, 165.44, 134.83, 133.49, 131.79, 129.83, 124.17, 124.01, 81.01, 63.14, 60.31, 31.84, 29.04, 24.42, 20.84; ^19^F NMR (400 MHz, CDCl\textsubscript{3}) δ –78.84; IR (neat, cm-1) 2923, 2851, 1716, 1624, 1266, 1189, 746; HRMS (ESI): m/z calcd for C\textsubscript{17}H\textsubscript{19}F\textsubscript{3}N\textsubscript{2}O\textsubscript{8}Na [M+Na]+ 459.0986, Found 459.0992.

For more polar diastereomer] colorless oil; ^1^H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.84 (d, J = 7.4 Hz, 1H), 7.72 – 7.58 (m, 3H), 5.30 – 5.21 (m, 1H), 4.18 (t, J = 6.1 Hz, 2H), 3.41 – 3.31 (m, 1H), 3.13 – 3.04 (m, 1H), 2.07 (s, 3H), 2.05 – 1.99 (m, 2H), 1.89 – 1.81 (m, 2H), 1.76 – 1.70 (m, 2H); ^13^C NMR (125 MHz, CDCl\textsubscript{3}) δ 171.18, 165.53, 134.79, 133.45, 131.78, 129.85, 124.11, 123.98, 81.41, 63.77, 60.28, 31.79, 29.52, 24.43, 20.82; ^19^F NMR (400 MHz, CDCl\textsubscript{3}) δ –78.90; IR (neat, cm-1) 3054, 1716, 1624, 1265, 1200, 896, 744, 642; HRMS (ESI): m/z calcd for C\textsubscript{17}H\textsubscript{19}F\textsubscript{3}N\textsubscript{2}O\textsubscript{8}Na [M+Na]+ 459.0986, Found 459.0975.

Methyl 7-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)-5-(nitrooxy)heptanoate (2ja)

HPLC: AD-H column, eluent: hexane/IPA = 20/1, flow rate: 9.5 mL/min, retention time 55 min and 65 min and 115 min.

For less polar diastereomer] colorless oil; ^1^H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.86 (d, J = 7.4 Hz, 1H), 7.71 – 7.62 (m, 2H), 7.56 (d, J = 7.3 Hz, 1H), 5.33 – 5.30 (m, 1H), 3.71 (s, 3H), 3.50 – 3.42 (m, 1H), 3.17 – 3.06 (m, 1H), 2.44 – 2.33 (m, 2H), 2.05 – 1.95 (m, 2H), 1.17 – 1.69 (m, 4H); ^13^C NMR (125 MHz, CDCl\textsubscript{3}) δ 174.11, 165.29, 134.53, 133.60, 131.86, 129.90, 124.20, 123.88, 80.73, 59.53, 51.97, 33.13, 31.40, 31.38, 19.95; ^19^F NMR (400 MHz, CDCl\textsubscript{3}) δ –78.74; IR (neat, cm-1) 2987, 1716, 1625, 1472, 1276, 1198, 1082, 877, 731; HRMS (ESI): m/z calcd for C\textsubscript{17}H\textsubscript{19}F\textsubscript{3}N\textsubscript{2}O\textsubscript{8}Na [M+Na]+ 459.0986, Found 445.0983.

For more polar diastereomer] colorless oil; ^1^H NMR (500 MHz, CDCl\textsubscript{3}) δ 8.62 (brs, 1H), 7.86 (d, J = 7.4 Hz, 1H), 7.72 – 7.59 (m, 3H), 5.25 – 5.16 (m, 1H), 3.69 (s, 3H), 3.48 – 3.38 (m, 1H), 3.18 – 3.09 (m, 1H), 2.42 – 2.26 (m, 2H), 2.12 – 2.00 (m, 1H), 2.00 – 1.92 (m, 1H), 1.91 – 1.80 (m, 1H), 1.79 – 1.70 (m, 3H); ^13^C NMR (125 MHz, CDCl\textsubscript{3}) δ 173.80, 165.43, 134.54, 133.49, 131.87, 129.86, 124.30, 124.05, 81.50, 60.32, 51.80, 33.30, 32.04, 31.66, 20.05; ^19^F NMR (400 MHz, CDCl\textsubscript{3}) δ –78.87; IR (neat, cm-1) 2987, 1716, 1625, 1474, 1265, 1200, 896, 739, 705; HRMS (ESI): m/z calcd for C\textsubscript{17}H\textsubscript{19}F\textsubscript{3}N\textsubscript{2}O\textsubscript{8}Na [M+Na]+ 459.0986, Found 445.0988.
methyl 7-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)-4-(nitrooxy)heptanoate (2jb)

HPLC: AD-H column, eluent: hexane/IPA = 20/1, flow rate: 9.5 mL/min, retention time 65 min, 68 min and 97 min.

[for less polar diastereomer] colorless oil; colorless oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.86 (d, \(J = 7.3, 1H\)), 7.71 – 7.60 (m, 3H), 5.24 – 5.04 (m, 1H), 3.72 (3.71) (s, 3H), 3.40 – 3.29 (m, 1H), 2.49 – 2.35 (m, 2H), 2.15 – 2.05 (m, 1H), 2.03 – 1.91 (m, 1H), 1.85 – 1.79 (m, 1H), 1.77 – 1.67 (m, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 173.45, 165.55, 134.83, 133.43, 131.76, 129.87, 124.16, 124.04, 83.08, 82.71, 63.71, 62.93, 52.12, 51.99, 29.48, 29.40, 29.20, 28.79, 27.56, 24.47; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.77; IR (neat, cm\(^{-1}\)) 3054, 2926, 1716, 1635, 1473, 1264, 1200, 1023, 746; HRMS (ESI): m/z calcd for C\(_{17}\)H\(_{19}\)F\(_3\)N\(_2\)O\(_8\)Na [M+Na\(^+\)] 459.0986, Found 445.0983.

[for more polar diastereomer] colorless oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.86 (d, \(J = 7.6\) Hz, 1H), 7.70 – 7.62 (m, 3H), 5.24 – 5.15 (m, 1H), 3.70 (s, 3H), 3.35 – 3.31 (m, 1H), 3.12 – 3.04 (m, 1H), 2.44 (t, \(J = 7.2\) Hz, 2H), 2.13 – 2.04 (m, 1H), 2.00 –1.94 (m, 1H), 1.84 – 1.80 (m, 1H), 1.75 – 1.70 (m, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 173.26, 165.41, 134.81, 133.49, 131.78, 129.84, 124.18, 124.03, 86.55, 86.42, 60.83, 60.69, 37.51, 37.42, 36.53, 36.45, 23.42, 23.24, 13.57; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.89; IR (neat, cm\(^{-1}\)) 1716, 1624, 1276, 1200, 1007, 749; HRMS (ESI): m/z calcd for C\(_{17}\)H\(_{19}\)F\(_3\)N\(_2\)O\(_6\)Na [M+Na\(^+\)] 459.0986, Found 445.0979.

5-(2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yloxy)-3,3-dimethylpentan-2-yl nitrate (2k)

diastereo mixture (dr 1:1); white solid; \(^1\)H NMR (400 MHz, CDCl\(_3\), with one drop of D\(_2\)O) \(\delta\) 7.84 (d, \(J = 7.4\) Hz, 1H), 7.76 – 7.60 (m, 3H), 5.04 (m, 1H), 3.50 – 3.48 (m, 1H), 3.16 – 2.96 (m, 1H), 1.83 – 1.57 (m, 2H), 1.31 (t, \(J = 8.0\) Hz, 3H), 0.99 (0.94) (d, \(J = 8.0\) Hz, 3H + 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 165.51, 134.82, 133.49, 133.45, 131.75, 129.95, 124.10, 123.94, 86.55, 86.42, 60.83, 60.69, 37.51, 37.42, 36.53, 36.45, 23.42, 23.24, 13.57; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.99; IR (neat, cm\(^{-1}\)) 1719, 1639, 1490, 1277, 1008, 823, 750; HRMS (ESI): m/z calcd for C\(_{16}\)H\(_{19}\)F\(_3\)N\(_2\)O\(_6\)Na [M+Na\(^+\)] 415.1087, Found 415.1107.

Spectral data of ketone products 3a-3f was in accordance with reported data.\(^1\)

S-16
6-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)-4-oxohexanenitrile (3g)

\[
\text{H NMR (392 MHz, CDCl}_3\text{) } \delta \ 8.74 \text{ (brs, 1H), } 7.87 \text{ (d, } J = 7.5 \text{ Hz, 1H), } 7.72 \text{ – } 7.58 \text{ (m, 3H), } 3.45 \text{ – } 3.34 \text{ (m, 1H), } 3.07 \text{ – } 2.94 \text{ (m, 1H), } 2.93 \text{ (t, } J = 7.1 \text{ Hz, 2H), } 2.89 \text{ – } 2.72 \text{ (m, 2H), } 2.62 \text{ (t, } J = 7.1 \text{ Hz, 2H); } \text{C NMR (123 MHz, CDCl}_3\text{) } \delta \ 205.38, 164.40, 133.91, 133.28, 131.88, 130.14, 124.24, 124.17, 121.68 (q, } J = 291.6 \text{ Hz), } 118.59, 90.60 (q, } J = 38.2 \text{ Hz), } 58.12, 41.22, 38.37, 11.24; \text{ IR (neat, cm}^{-1} \text{) } 3020, 2359, 1732, 1717, 1215, 759; \text{ HRMS (ESI): m/z calcd for C}_{15}H_{13}F_3N_2O_4Na [M+Na]^+ 365.0720, Found 365.0710.}

From starting material 1h, γ-ketone product 3h were purified by HPLC separation. The δ-ketone product was formed in trace amount.

2-(6-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)-4-oxohexyl)isoindoline-1,3-dione (3h)

\[
\text{H NMR (500 MHz, CDCl}_3\text{) } \delta \ 8.37 \text{ (brs, 1H), } 7.90 \text{ (dd, } J = 6.5, 1.9 \text{ Hz, 1H), } 7.87 \text{ – } 7.79 \text{ (m, 2H), } 7.76 \text{ – } 7.68 \text{ (m, 2H), } 7.69 \text{ – } 7.61 \text{ (m, 2H), } 7.58 \text{ (d, } J = 7.2 \text{ Hz, 1H), } 3.75 \text{ – } 3.64 \text{ (m, 2H), } 3.60 \text{ – } 3.53 \text{ (m, 2H), } 3.28 \text{ – } 3.16 \text{ (m, 2H), } 3.00 \text{ – } 2.88 \text{ (m, 2H), } 2.66 \text{ – } 2.59 \text{ (m, 1H), } 2.56 \text{ (t, } J = 7.0 \text{ Hz, 2H), } 2.10 \text{ – } 1.90 \text{ (m, 2H); } \text{C NMR (126 MHz, CDCl}_3\text{) } \delta \ 209.73, 168.58, 163.22, 134.11, 132.82, 131.89, 131.69, 130.72, 124.25, 124.02, 123.33, 121.70 (d, } J = 282.2 \text{ Hz), } 90.37 \text{ (d, } J = 33.4 \text{ Hz), } 57.38, 41.20, 40.00, 36.83, 22.43; \text{ F NMR (400 MHz, CDCl}_3\text{) } \delta \ -78.56; \text{ IR (neat, cm}^{-1} \text{) } 2930, 2253, 1771, 1715, 1397, 1190, 910, 732; \text{ HRMS (ESI): m/z calcd for C}_{23}H_{19}F_3N_2O_6Na [M+Na]^+ 499.1087, Found 499.1071.}

From starting material 1i, γ-ketone product 3i were obtained after flash column chromatography (hexane/EtOAc = 55/45 to 30/70). The δ-ketone product was formed in trace amount.

6-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)-4-oxohexyl acetate (3i)
1H NMR (392 MHz, CDCl$_3$) δ 8.29 (brs, 1H), 7.97 – 7.88 (m, 1H), 7.71 – 7.56 (m, 3H), 4.07 (td, $J = 6.2$, 3.9 Hz, 2H), 3.57 (t, $J = 10.2$ Hz, 1H), 3.28 – 3.16 (m, 1H), 3.05 – 2.90 (m, 2H), 2.67 – 2.49 (m, 3H), 2.12 – 2.00 (m, 3H), 2.00 – 1.87 (m, 2H); 13C NMR (126 MHz, CDCl$_3$) δ 210.07, 171.13, 163.09, 133.74, 132.84, 131.74, 130.73, 124.32, 123.99, 63.26, 57.21, 41.11, 39.61, 22.54, 20.88; 19F NMR (400 MHz, CDCl$_3$) δ –78.41; IR (neat, cm$^{-1}$) 2985, 2306, 2253, 1735, 1716, 1265, 1204, 911, 733; HRMS (ESI): m/z calcd for C$_{17}$H$_{18}$F$_3$NO$_6$Na [M+Na]$^+$ 412.0978, Found 412.0998.

From starting material 1j, γ (3ja) and δ (3jb) ketone products were obtained after flash column chromatography (hexane/EtOAc = 55/45 to 30/70). The γ/δ ratio is 3/1 by 1H NMR analysis. The major ketone product 3ja was purified by preparative HPLC.

methyl 7-((2-hydroxy-3-oxo-1-(trifluoromethyl)isoindolin-1-yl)oxy)-5-oxoheptanoate (3ja)

\[
\text{HPLC: Inertsil® diol column, eluent: hexane/CHCl}_3 = 2/1, \text{ flow rate: 9.5 mL/min, retention time 50 min.}
\]

1H NMR (500 MHz, CDCl$_3$) δ 8.26 (brs, 1H), 7.93 – 7.89 (m, 1H), 7.71 – 7.60 (m, 2H), 7.59 (d, $J = 7.0$ Hz, 1H), 3.67 (s, 3H), 3.56 (t, $J = 10.2$ Hz, 1H), 3.24 – 3.13 (m, 1H), 3.02 – 2.87 (m, 1H), 2.63 – 2.49 (m, 3H), 2.35 (t, $J = 7.0$ Hz, 2H), 1.97 – 1.87 (m, 2H); 13C NMR (126 MHz, CDCl$_3$) δ 210.37, 173.53, 163.16, 133.77, 132.84, 131.72, 124.29, 124.01, 57.30, 51.69, 41.94, 41.07, 32.65, 18.56; 19F NMR (400 MHz, CDCl$_3$) δ –78.56; IR (neat, cm$^{-1}$) 3053, 2986, 2253, 1734, 1716, 1265, 908, 734, 651; HRMS (ESI): m/z calcd for C$_{17}$H$_{18}$F$_3$NO$_6$Na [M+Na]$^+$ 412.0978, Found 412.0998.

3-((3,3-dimethyl-4-oxopentyl)oxy)-2-hydroxy-3-(trifluoromethyl)isoindolin-1-one (3k)

1H NMR (392 MHz, CDCl$_3$) δ 9.20 (brs, 1H), 7.84 (d, $J = 7.3$ Hz, 1H), 7.70 – 7.54 (m, 2H), 3.34 (dt, $J = 9.3$, 5.7 Hz, 1H), 3.06 (dt, $J = 9.3$, 5.7 Hz, 1H), 2.21 (s, 3H), 1.90 (t, $J = 5.7$ Hz, 2H), 1.11 (s, 3H); 13C NMR (99 MHz, CDCl$_3$) δ 215.51, 165.22, 134.26, 133.20, 131.64, 130.12, 124.37, 124.08, 121.74 (q, $J = 286.6$ Hz), 90.91 (q, $J = 33.0$ Hz), 60.66, 46.41, 39.12, 25.29, 24.54, 24.50; 19F NMR (400 MHz, CDCl$_3$) δ –78.11; IR (neat, cm$^{-1}$) 3053, 2986, 2305, 2253, 1734, 1716, 1265, 908, 734, 651; HRMS (ESI): m/z calcd for C$_{16}$H$_{18}$F$_3$NO$_4$Na [M+Na]$^+$ 368.1080, Found 368.1092.

S-18
2-hydroxy-3-(3-hydroxy-3-methylbutoxy)-3-(trifluoromethyl)isoindolin-1-one (4)

![Chemical structure of 2-hydroxy-3-(3-hydroxy-3-methylbutoxy)-3-(trifluoromethyl)isoindolin-1-one (4)]

colorless oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.86 (d, \(J = 7.1\) Hz, 1H), 7.64 (m, 3H), 3.57 – 3.47 (m, 1H), 3.36 – 3.24 (m, 1H), 2.02 – 1.91 (m, 1H), 1.73 – 1.58 (m, 1H), 1.42 (s, 3H), 1.27 (s, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 164.51, 134.33, 132.96, 131.62, 130.49, 124.18, 124.12, 121.86 (q, \(J = 285.0\) Hz), 90.87 (q, \(J = 33.8\) Hz), 70.87, 60.72, 40.83, 30.28, 30.12; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.53; IR (neat, cm\(^{-1}\)) 1716, 1635, 1507, 1457, 1199, 1081, 764; HRMS (ESI): m/z calcd for \(\text{C}_{14}\text{H}_{16}\text{F}_{3}\text{NO}_{4}\) [M+Na]\(^+\) 342.0924, Found 342.0945.

2-hydroxy-3-(3-hydroxybutoxy)-3-(trifluoromethyl)isoindolin-1-one (5)

HPLC: Inertsil® diol column, eluent: hexane/IPA = 10/1, flow rate: 9.5 mL/min, retention time 37 min and 56 min.
[for less polar diastereomer] white solid; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.87 (d, \(J = 7.8\) Hz, 1H), 7.70 – 7.58 (m, 3H), 4.10 – 3.94 (m, 1H), 3.46 – 3.29 (m, 2H), 1.91 – 1.65 (m, 2H), 1.31 (d, \(J = 6.3\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 164.53, 134.41, 132.98, 131.64, 130.49, 124.14, 124.08, 121.87 (q, \(J = 286.4\) Hz), 90.83 (q, \(J = 33.3\) Hz), 67.41, 62.36, 36.85, 23.97; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.59; IR (neat, cm\(^{-1}\)) 3175, 2934, 1719, 1470, 1190, 1081, 963, 730; HRMS (ESI): m/z calcd for \(\text{C}_{13}\text{H}_{14}\text{F}_{3}\text{NO}_{4}\) [M+Na]\(^+\) 328.0767, Found 328.0782.
[for more polar diastereomer] white solid; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.84 (d, \(J = 8.0\) Hz, 1H), 7.68 – 7.58 (m, 3H), 4.39 – 4.28 (m, 1H), 3.52 – 3.42 (m, 1H), 3.30 – 3.22 (m, 1H), 2.03 – 1.91 (m, 1H), 1.51 – 1.41 (m, 1H), 1.35 (d, \(J = 6.2\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 164.05, 134.49, 132.80, 131.48, 130.56, 123.99, 121.92 (q, \(J = 286.8\) Hz), 90.69 (q, \(J = 33.1\) Hz), 63.89, 59.28, 36.88, 23.26; \(^{19}\)F NMR (400 MHz, CDCl\(_3\)) \(\delta\) –78.59; IR (neat, cm\(^{-1}\)) 3173, 2934, 1719, 1470, 1190, 1081, 963, 730; HRMS (ESI): m/z calcd for \(\text{C}_{13}\text{H}_{14}\text{F}_{3}\text{NO}_{4}\) [M+Na]\(^+\) 328.0767, Found 328.0782.

butane-1,3-diol (6)

![Chemical structure of butane-1,3-diol (6)]
colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 4.11 – 4.00 (m, 1H), 3.93 – 3.77 (m, 2H), 2.47 (brs, 2H), 1.71 – 1.65 (m, 2H), 1.22 (d, $J = 6.1$ Hz, 3H); identical to a commercial source.