Supplementary Data

Enhancement of the properties of a drug by mono-deuteriation: reduction of acid-catalysed formation of a gut-motilide enol ether from 8-deuterio-erythromycin B

Pranab K. Bhadra, Abdolreza Hassanzadeh, Biljana Arsic, David G. Allison, Gareth A. Morris and Jill Barber

a Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK and b School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

† Present address: Pharmaceutics Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.

Correspondence to ba432@ymail.com
500 MHz 1D 1H spectra of erythromycin B (spectrum A) and 8-d-erythromycin B (spectrum B)
A contour plot of the 500 MHz TRNOESY spectrum of 2 mM 8-\textit{d}-erythromycin B plus 0.67 mM \textit{d}-ribosome in 50 mM potassium phosphate buffer, containing 6 mM MgCl$_2$ and 30 mM NH$_4$Cl, adjusted to pH 7.0. Spectrum was taken at 25 °C.
Fig. 1S The effect of 50 µg ml\(^{-1}\) of erythromycins A (2), B (3) and 8-\(d\)-erythromycin B (4) dissolved in a solution of 5 % V/V ethanol (99.7 %) against *S. aureus* (A) and *S. epidermidis* (B) in the agar diffusion assay. (1) represents the effect of solution of 5 % V/V ethanol (99.7%) as a negative control.
Fig. 2S Time-course 1H NMR spectra of acid-catalysed degradation of erythromycin B (A) and 8-d-erythromycin B (B) in Britton Robinson buffer (apparent pH 2.0; 37 °C); only the OCH$_3$-8" region is shown for simplicity. Spectra were acquired at 5 min intervals.