Supporting Information

Cationic palladium(II)-catalyzed dehydrative nucleophilic substitutions of benzhydryl alcohols with electron-deficient benzenethiols in water

Hidemasa Hikawa,* Yumo Machino, Mariko Toyomoto, Shoko Kikkawa, and Isao Azumaya*

Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
hidemasa.hikawa@phar.toho-u.ac.jp and isao.azumaya @phar.toho-u.ac.jp

1. Table of contents S1
2. Table 1, Entry 3 (\(^{1}\text{H}\) NMR analysis of the crude product) S2
3. Hammett study (A) S3
4. Hammett study (B) S4
5. Scale-up experiment (Scheme 8) S5
6. Copies of \(^{1}\text{H}\) and \(^{13}\text{C}\) NMR spectra of the all compounds S6-S55
A mixture of 2-mercaptobenzoic acid 1a (77 mg, 0.5 mmol), PdCl₂(MeCN)₂ (6.7 mg, 0.025 mmol), and benzhydrol 2a (110 mg, 0.6 mmol) in H₂O (2 mL) was heated at 80 °C for 16 h in a sealed tube under air. After the reaction mixture was cooled, p-nitroanisole (77 mg, 0.5 mmol, internal standard) was added to the reaction mixture, which was extracted with AcOEt. The organic layer was washed with brine, and concentrated in vacuo. The residue was analyzed by ¹H-NMR spectroscopy.

Conversion yield was calculated by integration.

<table>
<thead>
<tr>
<th>Signal δ</th>
<th>desired 3a</th>
<th>p-nitroanisole internal standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.97 (methin-¹H)</td>
<td>8.21 (Ar-¹H)</td>
<td></td>
</tr>
<tr>
<td>0.63 (1H)</td>
<td>2.00 (2H)</td>
<td></td>
</tr>
<tr>
<td>65% from 1a</td>
<td>77 mg (0.5 mmol)</td>
<td></td>
</tr>
</tbody>
</table>
Hammett study (A)

A mixture of 4-mercaptobezoic acid 1 (154 mg, 1 mmol), Pd(OAc)$_2$ (11 mg, 0.05 mmol), benzhydrol 2a (184 mg, 1 mmol), and benzhydryl alcohols 2X (1 mmol) in H$_2$O (4 mL) was heated at 80 °C in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO$_4$ and concentrated in vacuo. The residue was analyzed by 1H-NMR spectroscopy.

<table>
<thead>
<tr>
<th>X</th>
<th>σ^+</th>
<th>log(k_r/k_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMe</td>
<td>-0.778</td>
<td>2.25</td>
</tr>
<tr>
<td>Me</td>
<td>-0.311</td>
<td>0.96</td>
</tr>
<tr>
<td>diF</td>
<td>-0.073</td>
<td>-0.09</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cl</td>
<td>0.114</td>
<td>-0.57</td>
</tr>
</tbody>
</table>

$\log(k_{r}/k_{i}) = \log(25.74/95.15) = -0.57$
Hammett study (B)

A mixture of 5-substituted thiosalicylic acid 1X (0.25 mmol), 1a (34.0 mg, 0.25 mmol), PdCl₂(MeCN)₂ (4.1 mg, 0.016 mmol), and benzhydrol 2a (45.9 mg, 0.25 mmol) in H₂O (1 mL) was heated at 120 °C in a sealed tube under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was analyzed by ¹H-NMR spectroscopy.

<table>
<thead>
<tr>
<th>X</th>
<th>σ⁺</th>
<th>log(kᵣ/kᵣ₀)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>-0.073</td>
<td>0.08</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cl</td>
<td>0.114</td>
<td>-0.29</td>
</tr>
</tbody>
</table>
Scale-up experiment

A mixture of 2-mercaptobenzoic acid 1a (1.54 g, 10 mmol), PdCl$_2$(MeCN)$_2$ (129.8 mg, 0.5 mmol), and benzhydrol 2a (2.20 g, 12 mmol) in H$_2$O (40 mL) was heated at 95 °C for 16 h under air. After cooling, the reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO$_4$ and concentrated in vacuo. The residue was recrystallized from hexane/AcOEt to give desired product 3a (2.31 g, 72%).
S9
<table>
<thead>
<tr>
<th>Field Strength</th>
<th>9.38786(-9) (400 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_Arc_Duration</td>
<td>1.94333312[s]</td>
</tr>
<tr>
<td>X_Domain</td>
<td>130</td>
</tr>
<tr>
<td>X_Freq</td>
<td>100.32530333[MHz]</td>
</tr>
<tr>
<td>X_Offset</td>
<td>1.94333312[ppm]</td>
</tr>
<tr>
<td>X_Resolution</td>
<td>3720</td>
</tr>
<tr>
<td>X_Frequencies</td>
<td>4</td>
</tr>
<tr>
<td>X_Sweep</td>
<td>31.6705519[MHz]</td>
</tr>
<tr>
<td>X_Sweep_Cliped</td>
<td>25.1265814[MHz]</td>
</tr>
<tr>
<td>IRR_Radius</td>
<td>50</td>
</tr>
<tr>
<td>IRR_Freq</td>
<td>399.78219838[MHz]</td>
</tr>
<tr>
<td>IRR_Offset</td>
<td>5[ppm]</td>
</tr>
<tr>
<td>Clipped</td>
<td>FALSE</td>
</tr>
<tr>
<td>Scans</td>
<td>1024</td>
</tr>
<tr>
<td>Total Scans</td>
<td>1024</td>
</tr>
<tr>
<td>Relaxation_Delay</td>
<td>2[s]</td>
</tr>
<tr>
<td>Heteronuclear</td>
<td>40</td>
</tr>
<tr>
<td>Temp_Set</td>
<td>40[°C]</td>
</tr>
<tr>
<td>X_Half_Width</td>
<td>7.43[MHz]</td>
</tr>
<tr>
<td>X_Arc_Time</td>
<td>1.34333312[s]</td>
</tr>
<tr>
<td>X_Rangle</td>
<td>90[°]</td>
</tr>
<tr>
<td>X_Pulse</td>
<td>2.58333333[μs]</td>
</tr>
<tr>
<td>IRR_A_1</td>
<td>21.530[MHz]</td>
</tr>
<tr>
<td>IRR_A_2</td>
<td>21.530[MHz]</td>
</tr>
<tr>
<td>IRR_Wide</td>
<td>0.15[μs]</td>
</tr>
<tr>
<td>Unsmoothing</td>
<td>YES</td>
</tr>
<tr>
<td>Initial_Scan</td>
<td>1[s]</td>
</tr>
<tr>
<td>Ref</td>
<td>70[ppm]</td>
</tr>
<tr>
<td>NOE_Time</td>
<td>2[s]</td>
</tr>
<tr>
<td>Repetition_Time</td>
<td>0.34333312[s]</td>
</tr>
</tbody>
</table>
O₂N

S

Ph
Ph

3
Filename = \textit{H}-44.55_Farnesyl_Proton-1
Author = delta
Experiment = proton_jyg
Sample_ID = \textit{H}-44.55_Farnesyl
SolventC = CHLOROFORM-D
Creation_Time = 17-JUL-2015 08:51:25
Revision_Time = 30-OCT-2015 15:43:53
Current_Time = 30-OCT-2015 15:43:01

Comment = single_pulse
Data_Fomat = 10 COMPLEX
Dim_Title = Proton
Dim_Units = [ppm]
Site = JNM-ECS400

Field_Strength = 9.4597647(7) [T] (705[MHz])
X_Angle = 8.73683080[°]
X_Domin = 1.8
X_Freq = 339.7319383[MHz]
X_Offset = 5[ppm]
X_Points = 65536
X_Resolution = 1
X_Rolution = 5.11466671[kHz]
X_Sweep = 7.5206012[kHz]
X_Sweep_Cliped = 6.0240094[kHz]

Tr1_Domin = 0
Tr1_Freq = 339.7319383[MHz]
Tr1_Offset = 5[ppm]
Clipped = FALSE
Scans = 8
Total_Scans = 8

Relaxation_Delay = 5[ms]
Recov_Delay = 1

Temp_Set = 25.4[°C]
X_S0_Width = 9.72[kHz]
X_Angle = 63.0[°]
X_Offset = 3.4[ppm]
Sweep = 0.1[ppm]
Sweep_Mode = Off
Tr1_Mode = Off
Cuts_Freq = FALSE
Initial_Freq = 1
Repetition_Time = 13.73663000[ms]
X: parts per Million: Proton
S32
S34
$$\text{Filename} = \text{Y-MN-457_Protom-2-9-3df}
$$
$$\text{Author} = \text{delta}
$$
$$\text{Sample_Id} = \text{Y-MN-457}
$$
$$\text{Creation_Time} = 12-NOV-2015 17:51:03
$$
$$\text{Current_Time} = 4-JAN-2016 17:35:43
$$
$$\text{Comment} = \text{single pulse}
$$
$$\text{Data_Format} = 10\text{-COMPLEX}
$$
$$\text{Dim_Units} = \text{ppm}
$$
$$\text{Site} = \text{JNM-ECS400}
$$
$$\text{Spectrometer} = \text{JEOL RESONANCE}
$$
$$\text{Field_strength} = 9.41464636[\text{F}] (401\text{MHz})
$$
$$\text{X_Acq_Duration} = 8.73463680[\text{s}]
$$
$$\text{X_Domain} = \text{i}
$$
$$\text{X_Offset} = 5.5[\text{ppm}]
$$
$$\text{X_Points} = 45536
$$
$$\text{X_Resolution} = 0.11488471[\text{ppm}]
$$
$$\text{X_Sweep} = 7.5030012[\text{MHz}]
$$
$$\text{X_Sweep_Clipped} = 6.00240949[\text{MHz}]
$$
$$\text{T1_Sweep} = \text{Proton}
$$
$$\text{T1_Freq} = 399.78219638[\text{MHz}]
$$
$$\text{T1_Offset} = 5.5[\text{ppm}]
$$
$$\text{clipped} = \text{FALSE}
$$
$$\text{Siegm} = \text{B}
$$
$$\text{Total_Scan} = \text{B}
$$
$$\text{Relaxation_Delay} = 5[\text{s}]
$$
$$\text{Motor_Relay} = 46
$$
$$\text{Targ_Dat} = 20.3[\text{deg}]
$$
$$\text{Targ_Tilt} = 20.3[\text{deg}]
$$
$$\text{T1_Acq_Time} = 9.73443680[\text{s}]
$$
$$\text{X_Single} = 5.5[\text{ppm}]
$$
$$\text{X_Tilt} = 1.5[\text{deg}]
$$
$$\text{X_Turn} = 0.725[\text{deg}]
$$
$$\text{T1_Mode} = \text{off}
$$
$$\text{T1_Taxis} = \text{off}
$$
$$\text{Delta_Tcast} = \text{FALSE}
$$
$$\text{Initial_Want} = 1[\text{s}]
$$
$$\text{Repetition_Time} = 13.73463800[\text{s}]

\[
\text{S50}
\]