Supporting Information to

**Development and optimization of a competitive binding assay for the galactophilic low affinity lectin LecA from *Pseudomonas aeruginosa***

Ines Joachim¹²³, Sebastian Rikker¹, Dirk Hauck¹², Daniela Ponader¹, Sophia Boden¹, Roman Sommer², Laura Hartmann¹ and Alexander Titz¹²³*¹

¹ Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany

² Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover–Braunschweig (Germany)

³ Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany.

⁴ Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Research Campus Golm, 14424 Potsdam, Germany.

⁵ Heinrich-Heine-University Duesseldorf, Institute of Organic Chemistry and Macromolecular Chemistry, D-40225 Düsseldorf, Germany.

*corresponding author, email: alexander.titz@helmholtz-hzi.de
$^1$H and $^{13}$C spectra of synthesized compounds
MALDI-TOF-MS spectrum of β-D-Gal(1,4)-4-SDS (49)

RP-HPLC chromatogram (5/95 MeCN/H\textsubscript{2}O → 95/5 MeCN/H\textsubscript{2}O in 30 minutes) of β-D-Gal(1,4)-4-SDS (49) after purification by preparative HPLC. Signals were determined at 214 nm.
$^1$H NMR trace of fluorescent divalent LecA ligand 50 (600 MHz, D$_2$O).

RP-HPLC chromatogram (5/95 MeCN/H$_2$O $\rightarrow$ 95/5 MeCN/H$_2$O in 30 minutes) of β-D-Gal(1,4)-4-SDS-FITC (50) after purification by preparative HPLC. Signals were determined at 214 nm.
MALDI-TOF-MS spectrum of β-D-Gal(1,4)-4-SDS-FITC (50)

![MALDI-TOF-MS spectrum of β-D-Gal(1,4)-4-SDS-FITC (50)](image)

HPLC analysis of all fluorescent ligands (6-9 and 50)

Chromatographic separation was performed on a Dionex Ultimate 3000 HPLC (Thermo Scientific, Germany) with UV detection at 254 nm using a RP-18 column (100/2 Nucleoshell RP18plus, 2.7 µM from Machery Nagel, Germany) as stationary phase. LCMS grade distilled MeCN and double distilled H₂O were used as mobile phases supplemented with 0.1% HCO₂H (MS grade). In a gradient run, an initial concentration of 5% MeCN in H₂O was increased to 65% during 10 min at a flow rate 800 µL/min. The injection volume was 10 µL of 1 µM compound in H₂O/TBS buffer = 10:1. Chromatograms are blank run corrected.