### Pd-catalyzed Divergent Trifluoroethylation and Arylation of Arylboronic Acids by Aryl(2,2,2-trifluoroethyl)iodonium Triflates

Jing Yang, Qiu-Yan Han, Cheng-Long Zhao, Tao Dong, Zhi-Yuan Hou, Hua-Li Qin, Cheng-Pan Zhang\*

School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China

Email: cpzhang@whut.edu.cn

| 1. General considerations                                                              |  |  |  |  |
|----------------------------------------------------------------------------------------|--|--|--|--|
| 2. Screening the optimized reaction conditions for Pd-catalyzed trifluoroethylation of |  |  |  |  |
| arylboronic acids with aryl(trifluoroethyl)iodonium triflate                           |  |  |  |  |
| 3. Screening the optimized reaction conditions for Pd-catalyzed arylation of           |  |  |  |  |
| arylboronic acids with aryl(trifluoroethyl)iodonium triflate                           |  |  |  |  |
| 4. The control experiments for Pd-catalyzed trifluoroethylation and arylation of       |  |  |  |  |
| arylboronic acids with aryl(trifluoroethyl)iodonium triflate                           |  |  |  |  |
| 5. General procedure for Pd-catalyzed trifluoroethylation of arylboronic acids with    |  |  |  |  |
| aryl(trifluoroethyl)iodonium triflate                                                  |  |  |  |  |
| 6. General procedure for Pd-catalyzed arylation of arylboronic acids with              |  |  |  |  |
| aryl(trifluoroethyl)iodonium triflate                                                  |  |  |  |  |
| 7. The NMR spectra of <b>3</b> and <b>4</b>                                            |  |  |  |  |

#### 1. General considerations

All reactions were carried out under a nitrogen atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl<sub>3</sub> on a 500 or 400 MHz (for <sup>1</sup>H), 471 or 376 MHz (for <sup>19</sup>F), or 126 or 100 MHz (for <sup>13</sup>C) spectrometer. All chemical shifts were reported in ppm relative to TMS (0 ppm) for <sup>1</sup>H NMR and PhCF<sub>3</sub> (-63.5 ppm) for <sup>19</sup>F NMR as internal or external standards. The HPLC experiments were carried out on a Waters e2695 instrument (column: J&K, RP-C18, 5  $\mu$ m, 4.6 × 150 mm), and the yields of the products were determined by using the corresponding pure compounds as the external standards. Melting points of the products were measured and uncorrected. Trifluoroethylation reagents **2a**,<sup>1</sup> **2b**,<sup>1</sup> **2c**,<sup>2</sup> and **2d**<sup>3</sup> were synthesized according to the literatures.<sup>1-3</sup> Arylboronic acids and other reagents were all purchased from commercial sources and used without further purification.

# 2. Screening the optimized reaction conditions for Pd-catalyzed trifluoroethylation of arylboronic acids with aryl(trifluoroethyl)iodonium triflate

| Table   | 1  | Triflu | oroeth  | ylati | on | of | 1a   | by  | 2a   | in  | the | prese             | ence      | of    | various  | P    | d-cata | alysts | at |
|---------|----|--------|---------|-------|----|----|------|-----|------|-----|-----|-------------------|-----------|-------|----------|------|--------|--------|----|
| room te | em | perati | are usi | ng N  | аН | CO | 3 as | the | e ba | ise | and | CH <sub>2</sub> C | $Cl_2$ as | s the | e solver | nt.a |        |        |    |

| (1 equiv)<br>1a | + CF <sub>3</sub> Pd-catalyst<br>-OTf CH <sub>2</sub> Cl <sub>2</sub> , r.4<br>(2 equiv)<br>2a | t (10 mol%)<br>(1 equiv)<br>t., N <sub>2</sub> , 24 h<br>3a |
|-----------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Entry           | Pd-catalyst                                                                                    | Yield ( <b>3a</b> , %) <sup>b</sup>                         |
| 1               | (CH <sub>3</sub> CN) <sub>2</sub> PdCl <sub>2</sub>                                            | 0.4                                                         |
| 2               | PdCl <sub>2</sub>                                                                              | 1                                                           |
| 3               | $Pd(PCy_3)_2$                                                                                  | 3                                                           |
| 4               | $Pd(OAc)_2$                                                                                    | 2                                                           |
| 5               | Pd(dba) <sub>2</sub>                                                                           | 9                                                           |
| 6               | Pd <sub>2</sub> (dba) <sub>3</sub>                                                             | 6                                                           |

<sup>a</sup> Reaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), NaHCO<sub>3</sub> (0.1 mmol), Pd-

catalyst (0.01 mmol), CH<sub>2</sub>Cl<sub>2</sub> (2 mL), r.t., N<sub>2</sub>, 24 h. <sup>b</sup> The yields were determined by HPLC using 4-(2,2,2-trifluoroethyl)-1,1'-biphenyl (**3a**) as the external standard (t<sub>R</sub> = 6.7 min,  $\lambda_{max}$  = 250.0 nm, water/methanol = 20 : 80 (v / v)).

**Table 2-1** The solvent effects on the reaction of **1a** and **2a** at room temperature using  $Pd[P(t-Bu)_3]_2$  as the catalyst and NaHCO<sub>3</sub> as the base.<sup>a</sup>

| (1 equiv)<br>1a | + CF <sub>3</sub><br>+ OTf<br>(2 equiv)<br>2a | Pd[P( <i>t</i> -Bu) <sub>3</sub> ] <sub>2</sub> (10 mol%)<br>NaHCO <sub>3</sub> (1 equiv)<br>Solvents, r.t., N <sub>2</sub> , 24 h | CF <sub>3</sub> (3a)                |
|-----------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Entry           | Solvent                                       | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                                                | Yield ( <b>4a</b> , %) <sup>b</sup> |
| 1               | DMF                                           | 2%                                                                                                                                 | 19%                                 |
| 2               | $CH_2Cl_2$                                    | 3%                                                                                                                                 | 2%                                  |
| 3               | 1,4-dioxane                                   | 5%                                                                                                                                 | 10%                                 |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), Pd[P(t-Bu)<sub>3</sub>]<sub>2</sub> (0.01 mmol), NaHCO<sub>3</sub> (0.1 mmol), solvent (2 mL), r.t., N<sub>2</sub>, 24 h. <sup>b</sup> The yields were determined by HPLC using **3a** and 2,4,6-trimethyl-1,1':4',1"-terphenyl (**4a**) as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} =$ 257.1 nm; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B).

**Table 2-2** The solvent effects on the reaction of **1a** and **2a** at room temperature using  $Pd_2(dba)_3$  as the catalyst and NaHCO<sub>3</sub> as the base.<sup>a</sup>



| 2° | $CH_2Cl_2$         | 11    |
|----|--------------------|-------|
| 3  | 1,4-dioxane        | 8     |
| 4  | CH <sub>3</sub> CN | 15    |
| 5  | toluene            | 2     |
| 6  | DMF                | trace |
| 7  | DMSO               | 0     |
| 8  | THF                | 3     |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), NaHCO<sub>3</sub> (0.1 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (10 mol%), solvent (2 mL), r.t., N<sub>2</sub>, 24 h. <sup>b</sup> The yields were determined by HPLC using **3a** as the external standard ( $t_R = 6.7 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ , water/methanol = 20 : 80 (v / v)). The byproduct **4a** was not tested. <sup>c</sup> NaHCO<sub>3</sub> (0.2 mmol) was used.

| (1 equiv)<br>1a | B(OH)₂ +                           | CF <sub>3</sub><br>Pd-cataly<br>Base<br>CH <sub>3</sub> CN,<br>(2 equiv)<br>2a | st (10 mol%)<br>(2 equiv)<br>r.t., N <sub>2</sub> , 24 h | CF <sub>3</sub> (3a) |
|-----------------|------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|
| Entry           | Pd-catalyst                        | Base                                                                           | Yield ( <b>3a</b> , %)                                   | Yield (4a, %)        |
| 1 <sup>b</sup>  | $Pd_2(dba)_3$                      | NaHCO <sub>3</sub>                                                             | 26                                                       | 0                    |
| 2 <sup>b</sup>  | $Pd_2(dba)_3$                      | $K_2CO_3$                                                                      | 25                                                       | 2                    |
| 3 <sup>b</sup>  | Pd <sub>2</sub> (dba) <sub>3</sub> | K <sub>3</sub> PO <sub>4</sub>                                                 | 52                                                       | 1                    |
| 4 <sup>b</sup>  | $Pd_2(dba)_3$                      | $Cs_2CO_3$                                                                     | 2                                                        | 19                   |
| 6 <sup>c</sup>  | $Pd_2(dba)_3$                      | NaOAc                                                                          | 10                                                       | _                    |
| 7°              | $Pd_2(dba)_3$                      | t-BuOK                                                                         | 12                                                       | _                    |
| 8°              | $Pd_2(dba)_3$                      | KF                                                                             | 16                                                       | _                    |
| 9 <sup>b</sup>  | $Pd_2(dba)_3$                      | CsF                                                                            | 29                                                       | 0                    |
| 10°             | Pd(dba) <sub>2</sub>               | NaHCO <sub>3</sub>                                                             | 30                                                       | _                    |
| 11°             | Pd(dba) <sub>2</sub>               | $K_2CO_3$                                                                      | 47                                                       | _                    |
| 12°             | Pd(dba) <sub>2</sub>               | K <sub>3</sub> PO <sub>4</sub>                                                 | 45                                                       | -                    |
| 13°             | Pd(dba) <sub>2</sub>               | $Cs_2CO_3$                                                                     | 9                                                        | _                    |
| 14 c            | Pd(dba) <sub>2</sub>               | CsF                                                                            | 12                                                       | _                    |

Table 3 Trifluoroethylation of 1a with 2a in the presence of different bases.<sup>a</sup>

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), base (0.2 mmol), catalyst (0.01 mmol), CH<sub>3</sub>CN (2 mL), r.t., N<sub>2</sub>, 24 h. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B). <sup>c</sup> The yields were determined by HPLC using **3a** as the external standard ( $t_R = 6.7 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ , water/methanol = 20 : 80 (v / v)). "–": Not tested.

|   | (Y equiv.)<br>1a | + CF <sub>3</sub><br>+ OTf<br>(Z equiv.)<br>2a | Pd <sub>2</sub> (dba) <sub>3</sub> (10 mol%)<br>K <sub>3</sub> PO <sub>4</sub> (2 equiv)<br>CH <sub>3</sub> CN, r.t., N <sub>2</sub> , 24 h<br>3a |
|---|------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Entry            | Y : Z                                          | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                                                               |
| _ | 1                | 1.2 : 1                                        | 31                                                                                                                                                |
|   | 2°               | 1.2 : 1                                        | 34                                                                                                                                                |
|   | 3                | 1.5 : 1                                        | 29                                                                                                                                                |
|   | 4                | 1:1.2                                          | 42                                                                                                                                                |
|   | 5                | 1 : 1.5                                        | 48                                                                                                                                                |
|   | 6                | 1:2                                            | 52                                                                                                                                                |

Table 4 The influence of the molar ratio of 1a and 2a on the reaction.<sup>a</sup>

ī

<sup>a</sup> Reaction conditions: **1a** (0.1, 0.12 or 0.15 mmol), **2a** (0.1, 0.12, 0.15 or 0.2 mmol),  $K_3PO_4$  (0.2 mmol),  $Pd_2(dba)_3$  (0.01 mmol),  $CH_3CN$  (2 mL), r.t.,  $N_2$ , 24 h. <sup>b</sup> The yields were determined by HPLC using **3a** as the external standard ( $t_R = 6.7 \text{ min}, \lambda_{max} = 250.0 \text{ nm}, \text{water/methanol} = 20 : 80 (v / v)$ ). The byproduct **4a** was not tested. <sup>c</sup> 0.1 mmol of  $K_3PO_4$  was used.

Table 5 The choice of additives for Pd-catalyzed trifluoroethylation of 1a with 2a.<sup>a</sup>

| (1 equiv.)<br>1a | (2  equiv.)<br>(2  equiv.)<br>2a<br>$Pd_2(dba)$<br>$K_3PO_4 (3 e)$<br>$CH_3CN$ | (10  mol%)<br>equiv) / Additive<br>, r.t., N <sub>2</sub> , 24 h<br>3a |
|------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Entry            | Additive                                                                       | Yield ( <b>3a</b> , %) <sup>b</sup>                                    |
| 1                | H <sub>2</sub> O (1.8 mmol, 18 equiv)                                          | 42                                                                     |
| 2                | 4 Å MS (30 mg)                                                                 | 60                                                                     |
| 3                | 4 Å MS (100 mg)                                                                | 67                                                                     |
| 4 °              | 4 Å MS (100 mg)                                                                | 67                                                                     |
| 6                | Na <sub>2</sub> SO <sub>4</sub> (100 mg)                                       | 59                                                                     |
| 8                | CaSO <sub>4</sub> (100 mg)                                                     | 64                                                                     |
| 9                | Allochroic silicagel (100 mg)                                                  | 64                                                                     |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (0.01 mmol), K<sub>3</sub>PO<sub>4</sub> (0.3 mmol), CH<sub>3</sub>CN (2 mL), r.t., N<sub>2</sub>, 24 h. MS: molecular sieves. <sup>b</sup> The yields were determined by HPLC using **3a** as the external standard ( $t_R = 6.7 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ , water/methanol = 20 : 80 (v / v)). The byproduct **4a** was not tested. <sup>c</sup> 0.3 mmol of **2a** was used.

|   | (1 equiv)<br>1a | + CF <sub>3</sub><br>(2 equiv)<br>2a | Pd <sub>2</sub> (dba) <sub>3</sub> (10 mol%)<br>K <sub>3</sub> PO <sub>4</sub> (3 equiv) / Ligand<br>4 Å MS (100 mg)<br>CH <sub>3</sub> CN, r.t., N <sub>2</sub> , 24 h | CF <sub>3</sub> (3a)                |
|---|-----------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|   | Entry           | Ligand (12%)                         | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                                                                                     | Yield ( <b>4a</b> , %) <sup>b</sup> |
| • | 1               | DavePhos                             | 58                                                                                                                                                                      | < 1                                 |
|   | 2               | tBuMePhos                            | 51                                                                                                                                                                      | < 1                                 |
|   | 3               | TrixiePhos                           | 38                                                                                                                                                                      | < 1                                 |
|   | 4               | BrettPhos                            | 56                                                                                                                                                                      | < 1                                 |
|   | 5               | tBuDavePhos                          | 35                                                                                                                                                                      | < 1                                 |
|   | 6               | PhDavePhos                           | 50                                                                                                                                                                      | < 1                                 |

Table 6 Screening the ligands for Pd-catalyzed trifluoroethylation of 1a with 2a.<sup>a</sup>

| 7   | JohnPhos   | 47 | < 1 |
|-----|------------|----|-----|
| 8   | CyJohnPhos | 60 | < 1 |
| 9   | MePhos     | 51 | < 1 |
| 10  | RuPhos     | 63 | < 1 |
| 11° | RuPhos     | 56 | < 1 |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (0.01mmol), ligand (0.012 mmol), K<sub>3</sub>PO<sub>4</sub> (0.3 mmol), 4 Å MS (100 mg), CH<sub>3</sub>CN (2 mL), r.t., N<sub>2</sub>, 24 h. MS: molecular sieves. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B). <sup>c</sup> 0.02 mmol of RuPhos was used.

| (1 equiv)<br>1a | -B(OH) <sub>2 +</sub> | + CF <sub>3</sub> Pd <sub>2</sub> (<br>-OTf 4)<br>(2 equiv) C<br>2a | (dba) <sub>3</sub> (10 mol%)<br><sub>3</sub> PO <sub>4</sub> (3 equiv)<br>Å MS (100 mg)<br>H <sub>3</sub> CN, <i>T</i> , N <sub>2</sub> , <i>t</i> | (3a)                                |
|-----------------|-----------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Entry           | <i>T</i> (°C)         | <i>t</i> (d)                                                        | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                                                                | Yield ( <b>4a</b> , %) <sup>b</sup> |
| 1 °             | r.t.                  | 1                                                                   | 67                                                                                                                                                 | _                                   |
| 2 <sup>d</sup>  | r.t.                  | 2                                                                   | 78                                                                                                                                                 | < 1                                 |
| 3               | r.t.                  | 2                                                                   | 80                                                                                                                                                 | < 1                                 |
| 4               | r.t.                  | 3                                                                   | 78                                                                                                                                                 | < 1                                 |
| 5               | r.t.                  | 5                                                                   | 74                                                                                                                                                 | < 1                                 |
| 6               | 30                    | 1                                                                   | 72                                                                                                                                                 | < 1                                 |
| 7               | 50                    | 1                                                                   | 59                                                                                                                                                 | 6                                   |
|                 |                       |                                                                     |                                                                                                                                                    |                                     |

Table 7 Screening the reaction time and temperature.<sup>a</sup>

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (0.01 mmol), K<sub>3</sub>PO<sub>4</sub> (0.3 mmol), 4 Å MS (100 mg), CH<sub>3</sub>CN (2 mL), N<sub>2</sub>. MS: molecular sieves. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ;

gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B). c''-: Not tested.  $d 0.2 \text{ mmol of } K_3PO_4 \text{ was used}$ .

| (1 equiv)<br>1a | −B(OH) <sub>2 4</sub> | + CF <sub>3</sub> Pd <sub>2</sub> (0<br>-OTf 4 Å<br>(2 equiv)<br>2a | $\begin{array}{c} \text{(ba)}_{3} (\text{X mol}\%) \\ \text{PO}_{4} (3 \text{ equiv}) \\ \text{MS (100 mg)} \\ \text{CN, r.t., N_{2}, 2 d} \end{array}$ | CF <sub>3</sub> (3a)                |
|-----------------|-----------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Entry           | Х                     | Additive                                                            | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                                                                     | Yield ( <b>4a</b> , %) <sup>b</sup> |
| 1               | 10                    | 4 Å MS (100 mg)                                                     | 80                                                                                                                                                      | < 1                                 |
| 2               | 7.5                   | 4 Å MS (100 mg)                                                     | 76                                                                                                                                                      | < 1                                 |
| 3               | 5                     | 4 Å MS (100 mg)                                                     | 70                                                                                                                                                      | < 1                                 |
| 4               | 10                    | _                                                                   | 58                                                                                                                                                      | < 1                                 |

Table 8 Screening the catalyst loading of Pd<sub>2</sub>(dba)<sub>3</sub>.<sup>a</sup>

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (X mol%), K<sub>3</sub>PO<sub>4</sub> (0.3 mmol), CH<sub>3</sub>CN (2 mL), r.t., N<sub>2</sub>, 2 days. MS: molecular sieves. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B).

**Table 9** Pd-catalyzed trifluoroethylation of **1a** by other "CH<sub>2</sub>CF<sub>3</sub>" reagents at room temperature.<sup>a</sup>

| (1 equiv.)<br>1a | + X <b>CF</b> <sub>3</sub> -<br>(2 equiv.)<br><b>2b-e</b> | Pd <sub>2</sub> (dba) <sub>3</sub> (10 mol%)<br>K <sub>3</sub> PO <sub>4</sub> (3 equiv)<br>4 Å MS (100 mg)<br>CH <sub>3</sub> CN, r.t., N <sub>2</sub> , 24 h | → CF <sub>3</sub><br>3a             |
|------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Entry            | CF <sub>3</sub> CH                                        | I <sub>2</sub> X                                                                                                                                               | Yield ( <b>3a</b> , %) <sup>b</sup> |
| 1                | $[CF_{3}CH_{2}IC_{6}H_{5}][OTf] (\mathbf{2b})$            |                                                                                                                                                                | 69° (50 <sup>d</sup> )              |
| 2                | $TfOCH_2CF_3$ (2c)                                        |                                                                                                                                                                | 0 (0 <sup>d</sup> )                 |

3
 
$$T_{sOCH_2CF_3}(2d)$$
 $0 (0^d)$ 

 4
  $CF_3CH_2I(2e)$ 
 $0 (0^d)$ 

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2b-e** (0.2 mmol), K<sub>3</sub>PO<sub>4</sub> (0.3 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (10 mol%), 4 Å MS (100 mg), CH<sub>3</sub>CN (2 mL), r.t., N<sub>2</sub>, 24 h. MS: molecular sieves. <sup>b</sup> The yields were determined by HPLC using **3a** as the external standard ( $t_R = 6.7$  min,  $\lambda_{max} = 250.0$  nm, water/methanol = 20 : 80 (v / v)). The byproduct **4a** was not tested. <sup>c</sup> 48 h. <sup>d</sup> Yields without using 4 Å MS (100 mg).

(3a) Pd<sub>2</sub>(dba)<sub>3</sub> (10 mol%) (3 equiv) / Additive N, r.t., N<sub>2</sub>, 2 d (1 equiv) (2 equiv) 1a 2a Yield (3a, %)<sup>b</sup> Additive Yield (4a, %)<sup>b</sup> Entry Base 1 4 Å MS (100 mg) 39 < 1 2 0 0 3 K<sub>3</sub>PO<sub>4</sub> 4 Å MS (100 mg) 80 < 1

Table 10 The Pd-catalyzed trifluoroethylation in the absence of base and/or additive.<sup>a</sup>

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), K<sub>3</sub>PO<sub>4</sub> (0.3 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (10 mol%), 4 Å MS (100 mg), CH<sub>3</sub>CN (2 mL), r.t., N<sub>2</sub>, 2 d. MS: molecular sieves. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B).

# 3. Screening the optimized reaction conditions for Pd-catalyzed arylation of arylboronic acids with aryl(trifluoroethyl)iodonium triflate

 Table 1 Arylation of 1a by 2a in the presence of diverse Pd-catalysts, bases and solvents

| (1 equ<br>1a | B(OH) <sub>2</sub> +               | CF <sub>3</sub><br>OTf<br>(2 equiv)<br>2a | Pd–catalyst (<br>Base (2 d<br>Solvent, r.t., | (10 mol%)<br>equiv)<br>N <sub>2</sub> , 24 h | (3a)                                |
|--------------|------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------|
| Entry        | Pd-catalyst                        | Base                                      | Solvent                                      | Yield ( <b>3a</b> , %) <sup>b</sup>          | Yield ( <b>4a</b> , %) <sup>b</sup> |
| 1            | Pd(PPh <sub>3</sub> ) <sub>4</sub> | Na <sub>2</sub> CO <sub>3</sub>           | DCE                                          | 4                                            | 5                                   |
| 2            | $Pd(PPh_3)_4$                      | Na <sub>2</sub> CO <sub>3</sub>           | DMF                                          | < 1                                          | 3                                   |
| 3            | $Pd(PPh_3)_4$                      | Na <sub>2</sub> CO <sub>3</sub>           | DME                                          | 1                                            | 2                                   |
| 4            | $Pd(OAc)_2$                        | Na <sub>2</sub> CO <sub>3</sub>           | DCE                                          | 2                                            | 7                                   |
| 5            | $Pd(OAc)_2$                        | Na <sub>2</sub> CO <sub>3</sub>           | DMF                                          | < 1                                          | 21                                  |
| 6            | $Pd(OAc)_2$                        | Na <sub>2</sub> CO <sub>3</sub>           | DME                                          | 3                                            | 3                                   |
| 7            | $Pd_2(dba)_3$                      | Cs <sub>2</sub> CO <sub>3</sub>           | DMF                                          | 2                                            | 28                                  |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), base (0.2 mmol), Pd-catalyst (0.01 mmol), solvent (2 mL), r.t., N<sub>2</sub>, 24 h. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B).

| (1 equiv)<br>1a | )—B(OH) <sub>2</sub> +         | CF <sub>3</sub><br>-OTf<br>(2 equiv)<br><b>2a</b> | Pd[P( <i>t</i> -Bu) <sub>3</sub> ] <sub>2</sub> (10 mol%)<br>Base (X equiv)<br>DMF, r.t., N <sub>2</sub> , 24 h | (4a)                                |
|-----------------|--------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Entry           | Base                           | Х                                                 | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                             | Yield ( <b>4a</b> , %) <sup>b</sup> |
| 1               | $Cs_2CO_3$                     | 2                                                 | 2                                                                                                               | 75                                  |
| 2               | $Cs_2CO_3$                     | 3                                                 | 2                                                                                                               | 71                                  |
| 3               | NaHCO <sub>3</sub>             | 2                                                 | 2                                                                                                               | 34                                  |
| 4               | NaHCO <sub>3</sub>             | 3                                                 | 2                                                                                                               | 46                                  |
| 5               | K <sub>3</sub> PO <sub>4</sub> | 2                                                 | 2                                                                                                               | 55                                  |
| 6               | K <sub>3</sub> PO <sub>4</sub> | 3                                                 | 3                                                                                                               | 74                                  |

Table 2 Arylation of 1a by 2a in the presence of different bases and equivalents.<sup>a</sup>

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), base (0.2 or 0.3 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (0.01 mmol), DMF (2 mL), r.t., N<sub>2</sub>, 24 h. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B).

| (1 equiv) | )→B(OH) <sub>2</sub> + | + CF <sub>3</sub> Pd[P( <i>t</i> -E<br>−OTf Cs <sub>2</sub> C<br>DN<br>(2 equiv)<br><b>2a</b> | $Su_{3}_{2}$ (10 mol%)<br>$SO_{3}$ (2 equiv)<br>$MF, T, N_{2}, t$ | CF <sub>3</sub> (3a)                |
|-----------|------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|
| Entry     | <i>T</i> (°C)          | <i>t</i> (h)                                                                                  | Yield ( <b>3a</b> , %) <sup>b</sup>                               | Yield ( <b>4a</b> , %) <sup>b</sup> |
| 1         | r.t.                   | 24                                                                                            | 2                                                                 | 75                                  |
| 2         | r.t.                   | 36                                                                                            | 2                                                                 | 87                                  |
| 3         | r.t.                   | 48                                                                                            | 2                                                                 | 86                                  |
| 4         | 40                     | 24                                                                                            | 2                                                                 | 91                                  |
| 5         | 40                     | 48                                                                                            | 1                                                                 | 96 (84)                             |
| 6 °       | 40                     | 48                                                                                            | 1                                                                 | 49                                  |

Table 3 Screening the reaction time and temperature.<sup>a</sup>

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (0.01 mmol), DMF (2 mL), N<sub>2</sub>. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B). Isolated yield is depicted in the parentheses. <sup>c</sup> DMSO was used as the solvent.

Table 4 Screening the catalyst loading of Pd[P(t-Bu)<sub>3</sub>]<sub>2</sub>.<sup>a</sup>

| (1 equiv)<br>1a | e + CF <sub>3</sub><br>-OTf<br>(2 equiv)<br>2a | Pd[P(t-Bu) <sub>3</sub> ] <sub>2</sub> (X mol%)<br>Cs <sub>2</sub> CO <sub>3</sub> (2 equiv)<br>DMF, 40 °C, N <sub>2</sub> , 48 h | (4a)                                |
|-----------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Entry           | Х                                              | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                                               | Yield ( <b>4a</b> , %) <sup>b</sup> |
| 1               | 10                                             | 1                                                                                                                                 | 96 (84)                             |
| 2               | 7.5                                            | 1                                                                                                                                 | 94 (81)                             |
| 3               | 5                                              | < 1                                                                                                                               | 91                                  |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (X mol%), DMF (2 mL), 40 °C, N<sub>2</sub>, 48 h. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B). Isolated yield is depicted in the parentheses.

**Table 5** Arylation of **1a** by  $[C_6H_5ICH_2CF_3]^+[OTf]^-$  (**2b**) in the presence of different Pd-catalysts.<sup>a</sup>

| (1 equiv)<br>1a | B(OH) <sub>2</sub> + OTf<br>(2 equiv)<br>2b | Pd–catalyst (10 mol%)<br>Cs <sub>2</sub> CO <sub>3</sub> (2 equiv)<br>DMF, r.t., N <sub>2</sub> , 24 h | CF <sub>3</sub> (3a)                 |
|-----------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|
| Entry           | Pd-catalyst                                 | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                    | Yield ( <b>4a'</b> , %) <sup>b</sup> |
| 1               | $Pd_2(dba)_3$                               | 1                                                                                                      | 77                                   |
| 2 °             | $Pd_2(dba)_3$                               | < 1                                                                                                    | 42                                   |
| 3 <sup>d</sup>  | $Pd[P(t-Bu)_3]_2$                           | 4                                                                                                      | 48                                   |
| 4               | $Pd[P(t-Bu)_3]_2$                           | 2                                                                                                      | 84                                   |
| 5               | $Pd(OAc)_2$                                 | 2                                                                                                      | 65                                   |
| 6               | Pd(PPh <sub>3</sub> ) <sub>4</sub>          | 1                                                                                                      | 9                                    |
| 7               | $Pd(PCy_3)_2$                               | < 1                                                                                                    | 19                                   |

CE

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2b** (0.2 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol), Pd-catalyst (0.01 mmol), DMF (2 mL), r.t., N<sub>2</sub>, 24 h. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a'** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a'**:  $t_R = 11.7 \text{ min}$ ,  $\lambda_{max} = 278.0 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B). <sup>c</sup> DMSO was used as the solvent. <sup>d</sup> 0.2 mmol of NaHCO<sub>3</sub> was used.

| (1 equiv<br>1a | /             | CF <sub>3</sub><br>-OTf<br>(2 equiv)<br>2b | Pd–catalyst (10 mol%)<br>Cs <sub>2</sub> CO <sub>3</sub> (2 equiv)<br>DMF, <i>T</i> , N <sub>2</sub> , <i>t</i> | $\overline{\mathbf{a}}$ |                | )<br>(4a')     |
|----------------|---------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|----------------|----------------|
| Entry          | <i>T</i> (°C) | <i>t</i> (h)                               | Yield ( <b>3a</b> ,                                                                                             | %) <sup>b</sup>         | Yield (4a', %) | ) <sup>b</sup> |
| 1              | r.t.          | 24                                         | 2                                                                                                               |                         | 84             |                |
| 2              | r.t.          | 48                                         | 2                                                                                                               |                         | 83             |                |
| 3              | 40            | 48                                         | 2                                                                                                               |                         | 93             |                |

Table 6 Screening the reaction time and temperature.<sup>a</sup>

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2b** (0.2 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (0.01 mmol), DMF (2 mL), N<sub>2</sub>. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a'** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a'**:  $t_R = 11.7 \text{ min}$ ,  $\lambda_{max} = 278.0 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B).

## 4. The control experiments for Pd-catalyzed trifluoroethylation and arylation of arylboronic acids with aryl(trifluoroethyl)iodonium triflate

Table 1 Trifluoroethylation of 1a by 2a or 2b without Pd-catalysts.<sup>a</sup>

| (1 equiv)<br>1a | $+ R + R - OTf$ $(2 equiv)$ $(R = CH_3) \text{ or } 2b (R = CH_3)$ | K <sub>3</sub> PO <sub>4</sub> (3 equiv) | CF <sub>3</sub> (3a)                              |
|-----------------|--------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|
| Entry           | R                                                                  | Yield ( <b>3a</b> , %) <sup>b</sup>      | Yield ( <b>4a</b> or <b>4a'</b> , %) <sup>b</sup> |
| 1               | CH <sub>3</sub>                                                    | 0                                        | 0                                                 |
| 2               | Н                                                                  | 0                                        | 0                                                 |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** or **2b** (0.2 mmol), K<sub>3</sub>PO<sub>4</sub> (0.3 mmol), 4 Å MS (100 mg), CH<sub>3</sub>CN (2 mL), r.t., N<sub>2</sub>, 2 d. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a or 4a'** as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$  or **4a'**:  $t_R = 11.7 \text{ min}$ ,  $\lambda_{max} = 278.0 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B).

| (1 equiv)<br>1a | —B(OH) <sub>2</sub> +<br>R´<br><b>2a</b> (F | $R = CH_3) \text{ or } 2b (R = H)$ | <sup>2</sup> (dba) <sub>3</sub> (10 mol%)<br>K <sub>3</sub> PO <sub>4</sub> (3 equiv)<br>4 Å MS (100 mg)<br>H <sub>3</sub> CN, r.t., N <sub>2</sub> , 2 d | (3a)<br>R<br>R<br>R (4a or 4a')<br>R              |
|-----------------|---------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Entry           | R                                           | Additive                           | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                                                                       | Yield ( <b>4a</b> or <b>4a'</b> , %) <sup>b</sup> |
| 1               | CH <sub>3</sub>                             | none                               | 80                                                                                                                                                        | < 1                                               |
| 2               | Н                                           | none                               | 69                                                                                                                                                        | 7                                                 |
| 3               | $\mathrm{CH}_3$                             | TEMPO                              | < 1                                                                                                                                                       | 10                                                |
| 4               | Н                                           | TEMPO                              | < 1                                                                                                                                                       | 16                                                |
| 5               | CH <sub>3</sub>                             | styrene                            | 84                                                                                                                                                        | 0                                                 |
| 6               | Н                                           | styrene                            | 79                                                                                                                                                        | 0                                                 |

Table 2 Trifluoroethylation of 1a by 2a or 2b in the presence of different additives.<sup>a</sup>

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** or **2b** (0.2 mmol), K<sub>3</sub>PO<sub>4</sub> (0.3 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (10 mol%), 4 Å MS (100 mg), additive (2 equiv), CH<sub>3</sub>CN (2 mL), r.t., N<sub>2</sub>, 2 d. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** or **4a**' as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} =$ 257.1 nm or **4a**':  $t_R = 11.7 \text{ min}$ ,  $\lambda_{max} = 278.0 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B).

| (1 equiv)<br>1a | ─B(OH) <sub>2</sub> | + $R^{+}$ $CF_{3}^{+}$ $Pc$<br>R $^{-}OTf$ $-$<br>(2 equiv)<br><b>2a</b> (R = CH <sub>3</sub> ) or <b>2b</b> (R = H) | I[P( <i>t</i> -Bu) <sub>3</sub> ] <sub>2</sub> (10 mol%)<br>Cs <sub>2</sub> CO <sub>3</sub> (2 equiv)<br>DMF, r.t., N <sub>2</sub> , 48 h | CF <sub>3</sub> (3a)                              |
|-----------------|---------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Entry           | R                   | Additive                                                                                                             | Yield ( <b>3a</b> , %) <sup>b</sup>                                                                                                       | Yield ( <b>4a</b> or <b>4a'</b> , %) <sup>b</sup> |
| 1               | CH <sub>3</sub>     | none                                                                                                                 | 2                                                                                                                                         | 86                                                |
| 2               | Н                   | none                                                                                                                 | 2                                                                                                                                         | 83                                                |
| 3               | $\mathrm{CH}_3$     | TEMPO                                                                                                                | 0                                                                                                                                         | 67                                                |
| 4               | Н                   | TEMPO                                                                                                                | < 1                                                                                                                                       | 96                                                |
| 5               | CH <sub>3</sub>     | Styrene                                                                                                              | 0                                                                                                                                         | 44                                                |
| 6               | Н                   | Styrene                                                                                                              | 0                                                                                                                                         | 71                                                |
| 7°              | $\mathrm{CH}_3$     | none                                                                                                                 | 1                                                                                                                                         | 96                                                |
| 8°              | Н                   | none                                                                                                                 | 2                                                                                                                                         | 93                                                |
| 9°              | CH <sub>3</sub>     | H <sub>2</sub> O (0.1 mL)                                                                                            | 1                                                                                                                                         | 77                                                |
| 10 <sup>c</sup> | Н                   | H <sub>2</sub> O (0.1 mL)                                                                                            | 2                                                                                                                                         | 71                                                |

Table 3 Arylation of 1a by 2a or 2b in the presence of different additives.<sup>a</sup>

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** or **2b** (0.2 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (10 mol%), additive (2 equiv), DMF (2 mL), r.t., N<sub>2</sub>, 48 h. <sup>b</sup> The yields were determined by HPLC using **3a** and **4a** or **4a**' as the external standards, respectively (**3a**:  $t_R = 6.5 \text{ min}$ ,  $\lambda_{max} = 250.0 \text{ nm}$ ; **4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$ ; **4a'**:  $t_R = 11.7 \text{ min}$ ,  $\lambda_{max} = 278.0 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B). <sup>c</sup> 40 °C.

Table 4 Pd-catalyzed arylation of 1a by 2f or 2g in the presence of diverse additives.<sup>a</sup>

|                 | B(OH) <sub>2</sub> +               | R Pd[P( <i>t</i> -Bu) <sub>3</sub> ] <sub>2</sub> (10 mol%)<br>Cs <sub>2</sub> CO <sub>3</sub> (2 equiv)<br>DMF, r.t., N <sub>2</sub> , 48 h | →                                                         |
|-----------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| (1 equiv)       | (2 equ                             | liv)                                                                                                                                         | R                                                         |
| 1a              | <b>2f</b> (R = CH <sub>3</sub> ) o | or <b>2g</b> (R = H)                                                                                                                         | ( <b>4a</b> (R = CH <sub>3</sub> ) or <b>4a'</b> (R = H)) |
| Entry           | R                                  | Additive                                                                                                                                     | Yield ( <b>4a</b> or <b>4a'</b> , %) <sup>b</sup>         |
| 1               | CH <sub>3</sub>                    | none                                                                                                                                         | 20                                                        |
| 2               | Н                                  | none                                                                                                                                         | 49                                                        |
| 3               | CH <sub>3</sub>                    | TEMPO                                                                                                                                        | 31                                                        |
| 4               | Н                                  | TEMPO                                                                                                                                        | 53                                                        |
| 5               | CH <sub>3</sub>                    | Styrene                                                                                                                                      | 18                                                        |
| 6               | Н                                  | Styrene                                                                                                                                      | 65                                                        |
| 7°              | CH <sub>3</sub>                    | none                                                                                                                                         | 95                                                        |
| 8°              | Н                                  | none                                                                                                                                         | 97                                                        |
| 9c              | CH <sub>3</sub>                    | H <sub>2</sub> O (0.1 mL)                                                                                                                    | 67                                                        |
| 10 <sup>c</sup> | Н                                  | H <sub>2</sub> O (0.1 mL)                                                                                                                    | 76                                                        |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2f** or **2g** (0.2 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (10 mol%), additive (2 equiv), DMF (2 mL), r.t., N<sub>2</sub>, 48 h. <sup>b</sup> The yields were determined by HPLC using **4a** or **4a**' as the external standard (**4a**:  $t_R =$ 13.9 min,  $\lambda_{max} = 257.1$  nm or **4a**':  $t_R = 11.7$  min,  $\lambda_{max} = 278.0$  nm; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B). <sup>c</sup> 40 °C.

Table 5 Pd-catalyzed arylation of 1a by 2h or 2i at room temperature.<sup>a</sup>



| 2 | Н  | 96 |
|---|----|----|
| - | 11 | 20 |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2h** or **2i** (0.2 mmol), Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (10 mol%), DMF (2 mL), r.t., N<sub>2</sub>, 24 h. <sup>b</sup> The yield was determined by HPLC using **4a** or **4a'** as the external standard (**4a**:  $t_R = 13.9 \text{ min}$ ,  $\lambda_{max} = 257.1 \text{ nm}$  or **4a'**:  $t_R = 11.7 \text{ min}$ ,  $\lambda_{max} = 278.0 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B).

Table 6 Decomposition of 2a or 2b by bases.<sup>a</sup>

| $R \xrightarrow{R} CF_{3} + Base \xrightarrow{r.t., 48 h} R \xrightarrow{R} I$ $(1 \text{ equiv}) \xrightarrow{(1 \text{ equiv})} 2f (R = CH_{3}) \text{ or } 2b (R = H)$ |                 |                                 |                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|--------------------------------------------------|
| Entry                                                                                                                                                                     | R               | Base                            | Yield ( <b>2f</b> or <b>2g</b> , %) <sup>b</sup> |
| 1                                                                                                                                                                         | CH <sub>3</sub> | K <sub>3</sub> PO <sub>4</sub>  | 92                                               |
| 2                                                                                                                                                                         | CH <sub>3</sub> | Cs <sub>2</sub> CO <sub>3</sub> | 96                                               |
| 3                                                                                                                                                                         | Н               | K <sub>3</sub> PO <sub>4</sub>  | 96                                               |
| 4                                                                                                                                                                         | Н               | $Cs_2CO_3$                      | 98                                               |

<sup>a</sup> Reaction conditions: **2a** or **2b** (0.1 mmol), base (0.1 mmol), DMF (1 mL), r.t., N<sub>2</sub>, 48 h. <sup>b</sup> The yields were determined by HPLC using **2f** or **2g** as the external standard, respectively (**2f**:  $t_R = 11.2 \text{ min}$ ,  $\lambda_{max} = 230.0 \text{ nm}$  or **2g**:  $t_R = 4.9 \text{ min}$ ,  $\lambda_{max} = 226.4 \text{ nm}$ ; gradient elution: eluent A: water/methanol = 20 : 80 (v / v), eluent B: water/methanol = 5 : 95 (v / v); 0-6 min, eluent A; 6-10 min, from eluent A to eluent B; 10-15 min, eluent B). <sup>c</sup> 40 °C.

**Figure 1.** <sup>19</sup>F NMR spectrum of the reaction mixture of **1a** (0.1 mmol), **2a** (0.2 mmol),  $K_3PO_4$  (0.3 mmol),  $Pd_2(dba)_3$  (10 mol%), TEMPO (0.2 mmol), 4 Å MS (100 mg), and CH<sub>3</sub>CN (2 mL) at room temperature under N<sub>2</sub> for 2 days.



**Figure 2.** The combined <sup>19</sup>F NMR spectra of the reactions of **2a** (0.2 mmol) and TEMPO in the presence or absence of additives at room temperature under N<sub>2</sub> for 1 day. (*2a* was decomposed in the presence of TEMPO without substrate and catalyst)



**Figure 3.** <sup>19</sup>F NMR spectrum of the reaction mixture of **1a** (0.1 mmol), **2a** (0.2 mmol),  $K_3PO_4$  (0.3 mmol),  $Pd_2(dba)_3$  (10 mol%), Styrene (0.2 mmol), 4 Å MS (100 mg), and CH<sub>3</sub>CN (2 mL) at room temperature under N<sub>2</sub> for 2 days.



Figure 4. <sup>19</sup>F NMR spectrum of CF<sub>3</sub>CH<sub>2</sub>I in CH<sub>3</sub>CN



**Figure 5.** <sup>19</sup>F NMR spectrum of the reaction mixture of **1a** (0.1 mmol), **2a** (0.2 mmol),  $Cs_2CO_3$  (0.2 mmol),  $Pd[P(t-Bu)_3]_2$  (10 mol%), and DMF (2 mL) at 40 °C under N<sub>2</sub> for 2 days.



Figure 6. <sup>19</sup>F NMR spectrum of CF<sub>3</sub>CH<sub>2</sub>I in DMF





#### Figure 7. The combination of Figure 4 and Figure 5

### 5. General procedure for Pd-catalyzed trifluoroethylation of arylboronic acids with aryl(trifluoroethyl)iodonium triflate.

In a nitrogen-filled glovebox, a sealed tube was charged with arylboronic acid (1, 0.4 mmol),  $[ArICH_2CF_3]^+[OTf]^-$  (2, 0.8 mmol),  $Pd_2(dba)_3$  (0.04 mmol), 4 Å MS (400 mg),  $K_3PO_4$  (1.2 mmol), and  $CH_3CN$  (8 mL) with stirring. The mixture was reacted at room temperature for 48 h, filtered, and washed with  $CH_3CN$  for three times. The combined solution was concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether or a mixture of petroleum ether and ethyl acetate as eluents to give the trifluoroethylated product (3).

4-(2,2,2-Trifluoroethyl)-1,1'-biphenyl (3a).4



White solid, 68.9 mg, 73% yield, petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (d, J = 7.7 Hz, 4H), 7.48 (t, J = 7.4 Hz, 2H), 7.42–7.38 (m, 3H), 3.45 (q, J = 10.8 Hz, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -66.4 (t, J = 11.3 Hz, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  141.1 (s), 140.5 (s), 130.6 (s), 129.1 (q, J = 2.8 Hz), 128.8 (s), 127.5 (s), 127.4 (s), 127.1 (s), 125.8 (q, J = 276.4 Hz), 39.9 (q, J = 29.7 Hz).

2,2,2-Trifluoroethylbenzene (3b).<sup>5</sup>



47% or 48% <sup>19</sup>F NMR yield using C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> as an internal standard. GC-MS (*m/z*): 160.0 (M<sup>+</sup>). <sup>19</sup>F NMR (471 MHz)  $\delta$  -66.9 (t, *J* =11.2 Hz, 3F).

1-Methyl-4-(2,2,2-trifluoroethyl)benzene (3c).<sup>6</sup>



55% <sup>19</sup>F NMR yield using C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> as an internal standard. GC-MS (*m/z*): 174.0 (M<sup>+</sup>). <sup>19</sup>F NMR (471 MHz) δ -67.1 (t, J = 11.2 Hz, 3F).

1,3-Dimethyl-5-(2,2,2-trifluoroethyl)benzene (3d).<sup>7</sup>



68% <sup>19</sup>F NMR yield using C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> as an internal standard. GC-MS (*m/z*): 188.1 (M<sup>+</sup>). <sup>19</sup>F NMR (471 MHz) δ -66.8 (t, J = 11.2 Hz, 3F).

1-Methoxy-4-(2,2,2-trifluoroethyl)benzene (3e).<sup>7</sup>



67% <sup>19</sup>F NMR yield using C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> as an internal standard. GC-MS (*m/z*): 190.0 (M<sup>+</sup>). <sup>19</sup>F NMR (471 MHz) δ -67.3 (t, J = 11.2 Hz, 3F).

1,3-Dimethoxy-5-(2,2,2-trifluoroethyl)benzene (3f).<sup>8</sup>



27% <sup>19</sup>F NMR yield using C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> as an internal standard. GC-MS (*m/z*): 220.1 (M<sup>+</sup>). <sup>19</sup>F NMR (471 MHz) δ -66.6 (t, J = 11.2 Hz, 3F).

6-(2,2,2-Trifluoroethyl)-2,3-dihydrobenzo[b][1,4]dioxine (3g).9



70% <sup>19</sup>F NMR yield using C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> as an internal standard. GC-MS (*m/z*): 217.9 (M<sup>+</sup>). <sup>19</sup>F NMR (471 MHz) δ -67.2 (t, J = 11.2 Hz, 3F).

1-(*Tert*-butyl)-4-(2,2,2-trifluoroethyl)benzene (**3h**).<sup>9</sup>



70% <sup>19</sup>F NMR yield using C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> as an internal standard. GC-MS (*m/z*): 215.9 (M<sup>+</sup>). <sup>19</sup>F NMR (471 MHz) δ -66.9 (t, J = 11.2 Hz, 3F).

1-Phenoxy-4-(2,2,2-trifluoroethyl)benzene (3i).9



Colorless oil, 53.3 mg, 53% yield, petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (t, *J* = 7.8 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 2H), 3.33 (q, *J* = 10.8 Hz, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -66.2 (t, *J* = 10.8 Hz, 2H).

3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 157.4 (s), 156.8 (s), 131.5 (s), 129.8 (s), 125.8 (q, *J* = 276.5 Hz), 124.7 (q, *J* = 2.9 Hz), 123.6 (s), 119.2 (s), 118.7 (s), 39.5 (q, *J* = 29.8 Hz).

1-(Benzyloxy)-4-(2,2,2-trifluoroethyl)benzene (3j).<sup>9</sup>



White solid, 87.5 mg, 82% yield, petroleum ether / ethyl acetate = 40 : 1 (v / v) as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.47–7.35 (m, 5H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 5.10 (s, 2H), 3.33 (q, *J* = 10.8 Hz, 2H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -66.3 (t, *J* = 10.8 Hz, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  158.8 (s), 136.9 (s), 131.3 (s), 128.6 (s), 128.1 (s), 127.5 (s), 125.9 (q, *J* = 276.8), 122.5 (q, *J* = 2.9 Hz), 115.0 (s), 70.1 (s), 39.4 (q, *J* = 29.8 Hz).

1-Benzyloxy-2-chloro-4-(2,2,2-trifluoroethyl)benzene (3k).<sup>10</sup>



Light yellow solid, 81.7 mg, 68% yield, petroleum ether / ethyl acetate = 20 : 1 (v / v) as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, *J* = 7.4 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.39–7.36 (m, 2H), 7.15 (d, *J* = 8.3 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 5.19 (s, 2H), 3.31 (q, *J* = 10.7 Hz, 2H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -66.2 (t, *J* = 10.7 Hz, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.2 (s), 136.3 (s), 132.0 (s), 129.5 (s), 128.7 (s), 128.1 (s), 127.1 (s), 125.6 (q, *J* = 277.1 Hz), 123.5 (q, *J* = 3.0 Hz), 123.4 (s), 114.0 (s), 70.9 (s), 39.2 (q, *J* = 30.1 Hz).

2-(2,2,2-Trifluoroethyl)naphthalene (31).9



White solid, 57.3 mg, 68% yield, petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.89–7.87 (m, 3H), 7.81 (s, 1H),

7.55–7.53 (m, 2H), 7.44 (d, J = 8.3 Hz, 1H), 3.57 (q, J = 10.8 Hz, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -65.6 (t, J = 10.8 Hz, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  133.3 (s), 132.9 (s), 129.5 (s), 128.4 (s), 127.8 (s), 127.7 (s), 127.6 (s), 127.6 (m), 126.4 (s), 126.4 (s), 125.9 (q, J = 277.4 Hz), 40.4 (q, J = 29.7 Hz).

2-Methoxy-6-(2,2,2-trifluoroethyl)naphthalene (3m).<sup>9</sup>



White solid, 54.4 mg, 57% yield, petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 3.2 Hz, 1H), 7.75 (d, J = 3.8 Hz, 1H), 7.71 (s, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.20 (m, 1H), 7.16 (d, J = 1.2 Hz, 1H), 3.95 (s, 3H), 3.52 (q, J = 10.8 Hz, 2H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -65.8 (t, J = 10.9 Hz, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  158.1 (s), 134.1 (s), 129.3 (s), 129.3 (s), 128.8 (s), 128.1 (s), 127.2 (s), 126.0 (q, J = 277.6 Hz), 125.2 (q, J = 3.0 Hz), 119.3 (s), 105.6 (s), 55.3 (s), 40.2 (q, J = 29.6 Hz).

9-(2,2,2-Trifluoroethyl)phenanthrene (3n).<sup>9</sup>



White solid, 51.6 mg, 50% yield, petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.79 (d, *J* = 7.3 Hz, 1H), 8.72 (d, *J* = 8.3 Hz, 1H), 8.10 (d, *J* = 7.6 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.80 (s, 1H), 7.75–7.70 (m, 3H), 7.65 (t, *J* = 7.4 Hz, 1H), 3.94 (q, *J* = 10.5 Hz, 2H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -64.3 (t, *J* = 10.5 Hz, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  131.1 (s), 130.9 (s), 130.8 (s), 130.6 (s), 130.5 (s), 128.6 (s), 127.2 (s), 126.9 (s), 126.7 (s), 126.2 (q, *J* = 277.6 Hz), 124.9 (q, *J* = 3.0 Hz), 124.4 (s), 123.3 (s), 122.6 (s), 37.2 (q, *J* = 30.0 Hz).

4-(2,2,2-Trifluoroethyl)dibenzodibenzofuran (30).



White solid, 44.1 mg, 44% yield, petroleum ether as the eluent for column chromatography. M.p.: 73–74 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.99–7.95 (m, 2H), 7.63 (d, J = 8.2 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.45 (d, J = 7.4 Hz, 1H), 7.41–7.36 (m, 2H), 3.83 (q, J = 10.7 Hz, 2H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -65.3 (t, J = 10.7 Hz, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.1 (s), 155.2 (s), 128.8 (s), 127.5 (s), 125.8 (q, J = 277.7 Hz), 124.5 (s), 124.2 (s), 123.0 (s), 122.9 (s), 120.8 (s), 120.7 (s), 114.3 (q, J = 2.9 Hz), 111.8 (s), 34.4 (q, J = 31.0 Hz). IR (KBr): 3436, 1450, 1427, 1359, 1261, 1213, 1192, 1168, 1138, 1099, 934, 893, 795, 753, 717, 678, 642, 605 cm<sup>-1</sup>. HRMS-EI (m/z) calcd for C<sub>14</sub>H<sub>9</sub>F<sub>3</sub>O (M<sup>+</sup>): 250.0605; Found: 250.0608.

3-(2,2,2-trifluoroethyl)-1,1'-biphenyl (3p).<sup>9</sup>



White solid, 55.3 mg, 59% yield, petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.63–7.60 (m, 3H), 7.55 (s, 1H), 7.50–7.45 (m, 3H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.32 (d, *J* = 7.4 Hz, 1H), 3.47 (q, *J* = 10.8 Hz, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -65.8 Hz (t, *J* = 10.7 Hz, 3F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.8 (s), 140.7 (s), 130.7 (q, *J* = 3.0 Hz), 129.1 (s), 129.1 (s), 129.0 (s), 128.9 (s), 127.6 (s), 127.2 (s), 127.0 (s), 125.8 (q, *J* = 277.9 Hz), 40.3 (q, *J* = 29.7 Hz).

4-Chloro-4'-(2,2,2-trifluoroethyl)-1,1'-biphenyl (3r)



White solid, 67.3 mg, 62% yield, petroleum ether as the eluent for column chromatography. M.p.: 66–68 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (d, *J* = 7.7 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.40 (d, *J* = 7.7 Hz, 2H), 3.44 (q, *J* = 10.8 Hz, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -65.8 (t, *J* = 10.8 Hz, 3F). <sup>13</sup>C

NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  139.9 (s), 138.9 (s), 133.7 (s), 130.7 (s), 129.5 (q, J = 3.1 Hz), 129.0 (s), 128.4 (s), 127.3 (s), 125.7 (q, J = 277.6 Hz), 39.9 (q, J = 29.8 Hz). IR (KBr): 3480, 3410, 2952, 1654, 1484, 1433, 1366, 1258, 1137, 1068, 907, 863, 802, 760, 664, 632 cm<sup>-1</sup>. HRMS-EI (m/z) calcd for C<sub>14</sub>H<sub>10</sub>ClF<sub>3</sub> (M<sup>+</sup>): 270.0423; Found: 270.0418.

4-Methoxy-4'-(2,2,2-trifluoroethyl)-1,1'-biphenyl (3s)



White solid, 78.0 mg, 73% yield, petroleum ether as the eluent for column chromatography. M.p.: 98–100 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58-7.55 (m, 4H), 7.37 (d, *J* = 7.7 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 3.88 (s, 3H), 3.43 (q, *J* = 10.8 Hz, 2H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -65.9 (t, *J* = 10.8 Hz, 3F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.4 (s), 140.7 (s), 133.0 (s), 130.5 (s), 128.5 (q, *J* = 3.2 Hz), 128.1 (s), 127.0 (s), 125.8 (q, *J* = 277.0 Hz), 114.3 (s), 55.4 (s), 39.9 (q, *J* = 29.7 Hz). IR (KBr): 3450, 2967, 2840, 1640, 1501, 1459, 1368, 1278, 1153, 1073, 911, 831, 796, 739, 651, 642 cm<sup>-1</sup>. HRMS-EI (m/z) calcd for C<sub>15</sub>H<sub>13</sub>F<sub>3</sub>O (M<sup>+</sup>): 266.0918; Found: 266.0920.

### 6. General procedure for Pd-catalyzed arylation of arylboronic acids with aryl(trifluoroethyl)iodonium triflate.

In a nitrogen-filled glovebox, a sealed tube was charged with arylboronic acid (1, 0.4 mmol),  $[ArICH_2CF_3]^+[OTf]^-$  (2, 0.8 mmol),  $Pd[P(t-Bu)_3]_2$  (0.02, 0.03, or 0.04 mmol),  $Cs_2CO_3$  (0.8 mmol), and DMF (4 mL) with stirring. The mixture was reacted at 40 °C for 48 h and extracted with ethyl acetate (3 times). The organic solution was washed by water, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether or a mixture of petroleum ether and ethyl acetate as eluents to give the arylation product (4).

2,4,6-Trimethyl[1,1';4',1"]terphenyl (4a).<sup>11a</sup>



White solid, 88.2 mg, 81% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.72–7.69 (m, 4H), 7.51 (t, *J* = 7.4 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.01 (s, 2H), 2.39 (s, 3H), 2.11 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.0 (s), 140.1 (s), 139.3 (s), 138.7 (s), 136.7 (s), 136.1 (s), 129.8 (s), 128.8 (s), 128.1 (s), 127.2 (s), 127.1 (s), 21.1 (s), 20.9 (s).

1,1':4',1"-Terphenyl (4a')<sup>11b</sup>



White solid, 75.1mg, 82% yield (10 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.72-7.67 (m, 8H), 7.50 (t, *J* = 7.5 Hz, 4H), 7.40 (t, *J* = 7.4 Hz, 2H).

2,4,6-Trimethyl-1,1'-biphenyl (4b).<sup>12</sup>



Colorless oil, 51.4 mg, 66% yield (10 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 (t, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 7.4 Hz, 2H), 7.00 (s, 2H), 2.39 (s, 3H), 2.06 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.1 (s), 139.1 (s), 136.6 (s), 136.0 (s), 129.3 (s), 128.4 (s), 128.1 (s), 126.5 (s), 21.1 (s), 20.8 (s).

2,3',4,5',6-Pentamethyl-1,1'-biphenyl (4d).<sup>13</sup>



Colorless oil, 56.9 mg, 64% yield (5 mol%  $Pd[P(t-Bu)_3]_2$ ), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.01 (s, 1H), 6.98 (s, 2H), 6.80 (s, 2H), 2.39 (s, 6H), 2.38 (s, 3H), 2.06 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.0 (s), 139.3 (s), 137.7 (s), 136.3 (s), 135.9 (s), 128.1 (s), 128.0 (s), 127.0 (s), 21.4 (s), 21.0 (s), 20.8 (s).

3',5'-Dimethoxy-2,4,6-trimetheyl-1,1'-biphenyl (4f).<sup>14</sup>



Yellow solid, 73.6 mg, 72% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether / ethyl acetate = 20 : 1 (v / v) as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.97 (s, 2H), 6.48 (s, 1H), 6.34 (s, 2H), 3.83 (s, 6H), 2.36 (s, 3H), 2.09 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  160.8 (s), 143.2 (s), 139.0 (s), 136.6 (s), 135.9 (s), 128.0 (s), 107.3 (s), 98.7 (s), 55.3 (s), 21.0 (s), 20.5 (s).

6-Mesityl-2,3-dihydrobenzo[b][1,4]dioxine (4g)



Yellow oil, 77.4mg, 76% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.95 (s, 2H), 6.93 (d, *J* = 8.8 Hz, 1H), 6.69 (s, 1H), 6.63 (d, *J* = 8.2 Hz, 1H), 4.34 (s, 4H), 2.35 (s, 3H), 2.07 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  143.4 (s), 142.2 (s), 138.5 (s), 136.5 (s), 136.3 (s), 134.4 (s), 128.0 (s), 122.5 (s), 118.0 (s), 117.1 (s), 64.5 (s), 64.4 (s), 21.0 (s), 20.7 (s). IR (KBr): 2973, 2921, 2875, 1611, 1580, 1511, 1479, 1457, 1360, 1284,

1243, 1220, 1122, 1069, 1055, 1021, 932, 892, 851, 816, 758, 732, 689, 650 cm<sup>-1</sup>. HRMS-EI (m/z) calcd for C<sub>17</sub>H<sub>18</sub>O<sub>2</sub> (M<sup>+</sup>): 254.1307; Found: 254.1308.

9-Mesitylphenanthrene (4n).<sup>15</sup>



White solid, 92.2 mg, 78% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.82 (d, *J* = 8.4 Hz, 1H), 8.79 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.73–7.64 (m, 3H), 7.59 (s, 1H), 7.52–7.46 (m, 2H), 7.08 (s, 2H), 2.45 (s, 3H), 1.98 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  137.4 (s), 137.1 (s), 137.0 (s), 136.6 (s), 132.0 (s), 131.4 (s), 130.6 (s), 130.0 (s), 128.6 (s), 128.2 (s), 127.3 (s), 126.8 (s), 126.7 (s), 126.5 (s), 126.4 (s), 126.2 (s), 122.9 (s), 122.6 (s), 21.2 (s), 20.3 (s).

4-Mesityldibenzo[b,d]furan (40)



Colorless oil, 98.0 mg, 86% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 7.6 Hz, 1H), 8.01 (d, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.49–7.44 (m, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 7.5 Hz, 1H), 7.09 (s, 2H), 2.44 (s, 3H), 2.09 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.3 (s), 153.9 (s), 137.6 (s), 136.9 (s), 133.0 (s), 128.6 (s), 128.3 (s), 127.1 (s), 125.0 (s), 124.5 (s), 124.3 (s), 122.9 (s), 122.7 (s), 120.7 (s), 119.4 (s), 112.0 (s), 21.2 (s), 20.5 (s). IR (KBr): 3052, 2950, 2918, 2856, 1612, 1584, 1450, 1420, 1376, 1312, 1274, 1218, 1121, 1097, 1057, 1014, 932, 845, 799, 753, 684, 592 cm<sup>-1</sup>. HRMS-EI (m/z) calcd for C<sub>21</sub>H<sub>18</sub>O (M<sup>+</sup>): 286.1358; Found: 286.1354.

2,4,6-Trimethyl[1,1':3',1"]terphenyl (4p).<sup>16</sup>



Colorless oil, 90.3 mg, 83% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 7.6 Hz, 2H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.50–7.47 (m, 3H), 7.39 (t, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 7.4 Hz, 1H), 7.02 (s, 2H), 2.40 (s, 3H), 2.11 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.6 (s), 141.2 (s), 141.1 (s), 139.0 (s), 136.7 (s), 136.0 (s), 128.9 (s), 128.8 (s), 128.3 (s), 128.2 (s), 128.1 (s), 127.3 (s), 127.1 (s), 125.3 (s), 21.1 (s), 20.9 (s).

2,4,6-Trimethyl[1,1':2',1"]terphenyl (4q).<sup>17</sup>



Colorless oil, 23.2 mg, 21% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, *J* = 7.4 Hz, 1H), 7.47–7.41 (m, 2H), 7.21–7.20 (m, 4H), 7.15 (m, 2H), 6.83 (s, 2H), 2.30 (s, 3H), 1.95 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.5 (s), 141.0 (s), 139.1 (s), 137.9 (s), 136.3 (s), 135.9 (s), 130.7 (s), 130.2 (s), 128.8 (s), 128.0 (s), 127.6 (s), 127.3 (s), 127.3 (s), 126.5 (s), 21.1 (s), 20.7 (s).

2-Phenylbiphenyl (4q').<sup>12</sup>



Colorless oil, 85.7 mg, 93% yield (7.5 mol%  $Pd[P(t-Bu)_3]_2$ ) or 77.8 mg, 85% (10 mol%  $Pd[P(t-Bu)_3]_2$ ), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.50–7.45 (m, 4H), 7.28–7.22 (m, 6H), 7.20–7.19 (m, 4H). <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>) δ 141.6 (s), 140.6 (s), 130.6 (s), 129.9 (s), 127.9 (s), 127.5 (s), 126.5 (s).

4-Mesityldibenzo[b,d]thiophene (4t)



Colorless oil, 101.5 mg, 84% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.24 (d, *J* = 7.6 Hz, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 7.5 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.52–7.45 (m, 2H), 7.29 (d, *J* = 6.8 Hz, 1H), 7.06 (s, 2H), 2.43 (s, 3H), 2.04 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  140.1 (s), 139.8 (s), 137.6 (s), 136.7 (s), 136.3 (s), 136.2 (s), 136.1 (s), 135.7 (s), 128.4 (s), 127.3 (s), 126.7 (s), 125.0 (s), 124.3 (s), 122.9 (s), 121.8 (s), 120.1 (s), 21.2 (s), 20.0 (s). IR (KBr): 3059, 2950, 2917, 2854, 1611, 1572, 1450, 1384, 1323, 1301, 1250, 1182, 1100, 1042, 1023, 1003, 851, 812, 751, 725, 587 cm<sup>-1</sup>. HRMS-EI (m/z) calcd for C<sub>21</sub>H<sub>18</sub>S (M<sup>+</sup>): 302.1129; Found: 302.1134.

4-Chloro-2',4',6'-trimetheylbiphenyl (4u).<sup>16</sup>



White solid, 69.8 mg, 76% yield (10 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.43 (d, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 7.5 Hz, 2H), 6.98 (s, 2H), 2.37 (s, 3H), 2.03 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  139.5 (s), 137.8 (s), 137.0 (s), 135.9 (s), 132.5 (s), 130.8 (s), 128.7 (s), 128.2 (s), 21.0 (s), 20.7 (s).

3,5-Dichlorobiphenyl (4v').<sup>18</sup>



Colorless liquid, 86.1 mg, 97% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>) or 85.7 mg, 96% yield (10 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, *J* = 7.0 Hz, 2H), 7.49–7.47 (m, 4H), 7.43 (d, J = 7.4 Hz, 1H), 7.37 (s, 1H).<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  144.2 (s), 138.5 (s), 135.3 (s), 129.1 (s), 128.5 (s), 127.2 (s), 127.1 (s), 125.7 (s).

Methyl 2',4',6'-trimethyl-[1,1'-biphenyl]-4-carboxylate (4w).<sup>19</sup>



Light yellow solid, 59.2 mg, 58% (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether / ethyl acetate = 40 : 1 (v / v) as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (d, *J* = 7.7 Hz, 2H), 7.26 (d, *J* = 7.7 Hz, 2H), 6.98 (s, 2H), 3.98 (s, 3H), 2.37 (s, 3H), 2.01 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  167.2 (s), 146.3 (s), 138.0 (s), 137.1 (s), 135.5 (s), 129.8 (s), 129.5 (s), 128.6 (s), 128.2 (s), 52.1 (s), 21.0 (s), 20.6 (s).

Methyl [1,1'-biphenyl]-4-carboxylate (4w').<sup>19</sup>



White solid, 73.0 mg, 86% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>) or 73.5 mg, 87% (10 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether / ethyl acetate = 40 : 1 (v / v) as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, *J* = 8.1 Hz, 2H), 7.69 (d, *J* = 8.1 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.2 Hz, 1H), 3.97 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  171.4 (s), 167.0 (s), 145.7 (s), 140.0 (s), 130.1 (s), 128.9 (s), 128.2 (s), 127.3 (s), 127.1 (s), 52.1 (s).

2',4',6'-Trimethyl-[1,1'-biphenyl]-4-carbonitrile (4x).<sup>20</sup>



White solid, 44.6 mg, 50% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>) or 64.2 mg, 73% yield (10 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether / ethyl acetate = 40 : 1 (v / v) as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 7.7 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 2H), 6.99 (s, 2H), 2.37 (s, 3H), 2.00 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  146.5 (s), 137.6 (s), 137.2 (s), 135.3 (s), 132.3 (s), 130.4 (s), 128.4 (s), 119.0 (s), 110.7 (s), 21.0 (s), 20.6 (s).

[1,1'-Biphenyl]-4-carbonitrile (4x').<sup>20</sup>



White solid, 71.2 mg, 99% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether / ethyl acetate = 40 : 1 (v / v) as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.74–7.67 (m, 4H), 7.59 (d, *J* = 7.3 Hz, 2H), 7.51–7.41 (m, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.7 (s), 139.2 (s), 132.6 (s), 129.1 (s), 128.7 (s), 127.8 (s), 127.3 (s), 119.0 (s), 110.9 (s).

2',4',6'-Trimethyl-[1,1'-biphenyl]-4-carbaldehyde (4y).<sup>21</sup>



Yellow oil, 54.5 mg, 61% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>) or 75.3 mg, 84% yield (10 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether / ethyl acetate = 40 : 1 (v / v) as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.1 (s, 1H), 7.98 (d, *J* = 7.5 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 2H), 6.99 (s, 2H), 2.37 (s, 3H), 2.02 (s, 6H). <sup>13</sup>C NMR

(126 MHz, CDCl<sub>3</sub>) δ 192.1 (s), 148.2 (s), 137.8 (s), 137.3 (s), 135.4 (s), 135.0 (s), 130.2 (s), 129.9 (s), 128.3 (s), 21.0 (s), 20.6 (s).

2,4,6-Trimethyl-4'-nitro-1,1'-biphenyl (4z).<sup>22</sup>



Yellow solid, 73.4 mg, 76% yield (7.5 mol% Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub>), petroleum ether / ethyl acetate = 20 : 1 (v / v) as the eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.32 (d, *J* = 7.8 Hz, 2H), 7.36 (d, *J* = 7.8 Hz, 2H), 6.99 (s, 2H), 2.37 (s, 3H), 2.01 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.6 (s), 146.9 (s), 137.7 (s), 136.8 (s), 135.3 (s), 130.5 (s), 128.4 (s), 123.8 (s), 21.0 (s), 20.6 (s).

#### **References:**

[1] Tolnai, G. L.; Székely, A.; Makó, Z.; Gáti, T.; Daru, J.; Bihari, T.; Stirling, A.; Novák, Z. *Chem. Commun.* **2015**, *51*, 4488-4491.

- [2] Nguyen, T. B.; Martel, A.; Dhal, R.; Dujardin, G. Synlett 2009, 15, 2492-2496.
- [3] Gøgsig, T. M.; Søbjerg, L. S.; Lindhardt, A. T.; Jensen, K. L.; Skrydstrup, T. J. Org. Chem. 2008, 73, 3404-3410.
- [4] Zhu, L.; Li, Y.; Zhao, Y.; Hu, J. Tetrahedron Lett. 2010, 51, 6150-6152.
- [5] Jiang, X.; Qing, F. -L. Beilstein J. Org. Chem. 2013, 9, 2862-2865.
- [6] Ando, A.; Miki, T.; Kumadaki, I. J. Org. Chem. 1988, 53, 3637-3639.
- [7] Wu, G.; Deng, Y.; Wu, C.; Wang, X.; Zhang, Y.; Wang, J. Eur. J. Org. Chem.
  2014, 2014, 4477-4481.
- [8] Kawai, H.; Furukawa, T.; Nomura, Y.; Tokunaga, E.; Shibata, N. Org. Lett. 2011, 13, 3596-3599.
- [9] Zhao, Y.; Hu, J. Angew. Chem. Int. Ed. 2012, 51, 1033-1036.
- [10] Shi, G.; Zhang, Y. PTC Int. Appl. 2004010936, 2004.
- [11] (a) Wang, J.; Pomerantz, M. Tetrahedron Lett. 1995, 36, 2571-2574. (b) L. Bai, J.
- -X. Wang, Adv. Syn. Catal. 2008, 350, 315-320.

[12] Bolliger, J. L.; Frech, C. M. Adv. Synth. Catal. 2010, 352, 1075-1080.

[13] Ganesamoorthy, S.; Shanmugasundaram, K.; Karvembu, R. J. Mol. Catal. A-Chem. 2013, 371, 118-124.

[14] Joseph, J. T.; Sajith, A. M.; Ningegowda, R. C.; Nagaraj, A.; Rangappa, K. S.;Shashikanth, S. *Tetrahedron Lett.* 2015, *56*, 5106-5111.

- [15] Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita, Y. Angew. Chem. Int. Ed. 2008, 47, 1301-1304.
- [16] Bell, H. C.; Kalman, J. R.; May, G. L.; Pinhey, J. T.; Sternhell, S. Aust. J. Chem.1979, 32, 1531-1550.

[17] Tang, W.; Capacci, A. G.; Wei, X.; Li, W.; White, A.; Patel, N. D.; Savoie, J.;
Gao, J. J.; Rodriguez, S.; Qu, B.; Haddad, N.; Lu, B. Z.; Krishnamurthy, D.; Yee, N.
K.; Senanayake, C. H. *Angew. Chem. Int. Ed.* **2010**, *49*, 5879-5883.

[18] Kikuchi, T.; Nobuta, Y.; Umeda, J.; Yamamoto, Y.; Ishiyama, T.; Miyaura, N. *Tetrahedron* **2008**, *64*, 4967-4971.

[19] Liu, Y. -X.; Xue, D.; Wang, J. -D.; Zhao, C. -J. Zou, Q. -Z.; Wang, C.; Xiao. J *Synlett* **2013**, 24, 507-513.

- [20] (a) Liu, Z.; Dong, N.; Xu, M.; Sun, Z.; Tu, T. J. Org. Chem. 2013, 78, 7436-7444.
- (b) Ueda, M.; Saitoh, A.; Oh-tani, S.; Miyaura, N. *Tetrahedron* **1998**, *54*, 13079-13086.
- [21] Mutule, I.; Suna, E. Tetrahedron Lett. 2004, 45, 3909-3912.

[22] Desmarets, C.; Omar-Amrani, R.; Walcarius, A.; Lambert, J.; Champagne, B.;

Fort, Y.; Schneider, R.; Tetrahedron 2008, 64, 372-381.
## 7. The NMR spectra of 3 and 4.



00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 fl (ppm)











































00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 fl (ppm)





































































