Efficient Synthesis of Pyrrolo[1,2-a]quinoxalines Catalyzed by Brønsted Acid through Cleavage of C-C Bond

Caixia Xie¹, Lei Feng², Wanli Li³, Xiaojun Ma³, Xinkun Ma³, Yihan Liu³ and Chen Ma*ᵃ,b

¹School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.

ᵇState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China.

Supporting Information

Table of contents

1. Preparation of starting materials S1-S2
2. Spectra data of starting materials S3-S5
3. ¹H NMR, ¹³C NMR and HRMS spectra................... S5-S51
4. Reference ... S51
1. Preparation of starting materials

1.1 General procedure for preparation of 2-(1H-pyrrol-1-yl)anilines.

Scheme 1 General procedure for preparation of 2-(1H-pyrrol-1-yl)anilines.

2-(1H-pyrrol-1-yl)anilines were prepared according to a modified literature procedure.\(^1\) A mixture of substituted 2-nitroaniline (20 mmol) and 2,5-dimethoxytetrahydrofuran (20 mmol) in acetic acid (100 mL) was refluxed for 2 h with vigorous stirring. After cooling, the reaction mixture was poured into water (300 mL) and extracted with EtOAc three times (3×50 mL). The combined organic layers were dried with MgSO\(_4\) and the solvent was removed in vacuo to afford a residue. The residue was added to iron powder (80 mmol) and NH\(_4\)Cl (20 mmol) in water (50 mL) and reflux for 4 h. After cooling, the reaction mixture was poured into water (300 mL) and extracted with ethyl acetate time times (3×50 mL). The combined organic layers were dried with MgSO\(_4\) and the solvent was removed in vacuo to afford a residue. The residue was purified by column chromatography on silica gel using petroleum ether / EtOAc as eluent to provide the desired product. The spectra data are shown in 2 part.

1.2 General procedure for preparation of 2-(1H-indol-1-yl)aniline.

Scheme 2 General procedure for preparation of 2-(1H-indol-1-yl)anilines

2-(1H-indol-1-yl)anilines were prepared according to a modified literature procedure.\(^2\) A
mixture of 2-nitroaniline (2 mmol), N-heterocycle (2 mmol) and NaOH (2 mmol) in DMSO (4 mL) was stirred vigorously for 2 h. After cooling, the reaction mixture was poured into water (30 mL) and extracted with EtOAc three times (3×30 mL). The combined organic layers were dried with MgSO₄ and the solvent was removed in vacuo to afford a residue. The residue was added to iron powder (16 mmol) and NH₄Cl (1 mmol) in water (30 mL) and refluxed for 4 h. After cooling, the reaction mixture was poured into water (100 mL) and extracted with ethyl acetate twice (3×30 mL). The combined organic layers were dried with MgSO₄ and the solvent was removed in vacuo to afford a residue. The residue was purified by column chromatography on silica gel using petroleum ether / ethyl acetate as eluent to provide the desired product. The spectra data are shown in 2 part.

1.3 General procedure for preparation of Benzhydryl 3-oxobutanoate

![Scheme 3 General procedure for preparation of Benzhydryl 3-oxobutanoate](image)

Benzhydryl 3-oxobutanoate was prepared according to a modified literature procedure.³ In a 100 mL round-bottom flask, equipped with a magnetic stir bar and a reflux condenser, 2,2,6-trimethyl-4H-1,3-dioxin-4-one (2 mmol, 0.28 g) and benzyl alcohol (2 mmol, 0.36 g) was dissolved in 5 mL xylene. The reaction was heated to vigorous reflux for 4 h, then cooled to room temperature. Xylene was removed in vacuo. The residue was purified by column chromatography on silica gel using petroleum ether / ethyl acetate as eluent to provide the desired product. This compound is literature known.³
2. Spectra data of starting materials

2-(1H-pyrrol-1-yl)aniline (1a)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.16$-7.12 (m, 2H), 6.82 (t, $J = 2.1$ Hz, 2H), 6.79-6.75 (m, 2H), 6.33 (t, $J = 2.0$, 2H), 3.68 (s, 2H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 142.07$, 128.59, 127.54, 127.20, 121.74, 118.43, 116.13, 109.42; HRMS calcd for C$_{10}$H$_{10}$N$_2$ [(M+H)$^+$]: 159.0917; found, 159.0916.

5-methyl-2-(1H-pyrrol-1-yl)aniline (1b)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.03$ (d, $J = 7.7$ Hz, 1H), 6.80 (t, $J = 2.1$ Hz, 2H), 6.60 (d, $J = 9.2$ Hz, 2H), 6.32 (t, $J = 2.0$ Hz, 2H), 3.61 (s, 2H), 2.29 (s, 2H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 141.86$, 138.62, 126.98, 125.27, 121.86, 119.20, 116.60, 109.24, 21.20; HRMS calcd for C$_{11}$H$_{12}$N$_2$ [(M+H)$^+$]: 173.1073; found, 173.1081.

5-chloro-2-(1H-pyrrol-1-yl)aniline (1c)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.05$ (d, $J = 8.3$ Hz, 1H), 6.78-6.76 (m, 3H), 6.74 (dd, $J = 8.3$ Hz, 2.2 Hz, 1H), 6.34 (t, $J = 2.06$ Hz, 2H), 3.76 (s, 2H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 143.15$, 133.97, 128.17, 125.95, 121.65, 118.23, 115.62, 109.77; HRMS calcd for C$_{10}$H$_{9}$ClN$_2$ [(M+H)$^+$]: 193.0527; found, 193.0528.

5-fluoro-2-(1H-pyrrol-1-yl)aniline (1d)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.08$-7.04 (m, 1H), 6.76 (t, $J = 2.0$ Hz, 2H), 6.47-6.42 (m, 2H), 6.33 (t, $J = 2.0$ Hz, 2H), 3.78 (s, 2H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 163.98$ (1J$_{C,F}$ = 243 Hz), 143.93 (3J$_{C,F}$ = 12 Hz), 128.61 (3J$_{C,F}$ = 11 Hz), 123.64, 121.91, 109.60, 104.93 (2J$_{C,F}$ = 23 Hz), 102.57 (2J$_{C,F}$ = 26 Hz); HRMS calcd for C$_{10}$H$_9$FN$_2$ [(M+H)$^+$]: 177.0823; found, 177.0827.

5-methoxy-2-(1H-pyrrol-1-yl)aniline (1e)
1H NMR (400 MHz, CDCl$_3$): δ = 7.07 (dd, J = 8.8 Hz, 3.6 Hz, 1H), 6.77 (t, J = 2.8Hz, 2H), 6.35-6.31 (m, 4H), 3.78 (s, 3H), 3.67 (s, 2H); 13C NMR (100 MHz, CDCl$_3$): δ = 159.94, 143.36, 128.15, 122.12, 121.24, 109.17, 103.66, 102.13, 55.40; HRMS calcd for C$_{11}$H$_{12}$ON$_2$ [(M+H)$^+$]: 189.1022; found, 189.1024.

4-chloro-2-(1H-pyrrol-1-yl)aniline (1g)

1H NMR (300 MHz, CDCl$_3$): δ = 7.13-7.09 (m, 2H), 6.80 (m, J = 1.8 Hz, 2H), 6.71 (d, J = 8.4 Hz, 1H), 6.33 (d, J = 2.1 Hz, 2H), 3.70 (s, 2H); 13C NMR (75 MHz, CDCl$_3$): δ = 140.67, 128.38, 128.06, 126.98, 122.58, 121.51, 116.94, 109.88; HRMS calcd for C$_{10}$H$_9$ClN$_2$ [(M+H)$^+$]: 193.0527; found, 193.0529.

4-fluoro-2-(1H-pyrrol-1-yl)aniline (1h)

1H NMR (300 MHz, CDCl$_3$): δ = 6.93-6.86 (m, 2H), 6.83 (t, J = 2.1 Hz, 2H), 6.35 (d, J = 9.6 Hz, 5.1 Hz, 1H), 6.34-6.31 (m, 2H), 3.65 (s, 2H); 13C NMR (75 MHz, CDCl$_3$): δ = 157.14 (1J$_{C,F}$ = 236 Hz), 137.91, 127.88 (3J$_{C,F}$ = 9 Hz), 121.53, 116.89 (3J$_{C,F}$ = 8 Hz), 115.29 (2J$_{C,F}$ = 23 Hz), 114.10 (2J$_{C,F}$ = 23 Hz), 109.85; HRMS calcd for C$_{10}$H$_9$FN$_2$ [(M+H)$^+$]: 177.0823; found, 177.0821.

2-(1H-indol-1-yl)aniline (1i)

1H NMR (400 MHz, CDCl$_3$): δ = 7.69-7.67 (m, 1H), 7.23-7.14 (m, 6H), 6.83-6.80 (m, 2H), 6.67 (d, J = 3.16 Hz, 1H), 3.49 (s, 2H); 13C NMR (100 MHz, CDCl$_3$): δ = 143.21, 136.42, 129.24, 128.69, 128.62, 124.90, 122.30, 121.04, 120.24, 118.58, 116.31, 110.83, 103.28. HRMS calcd for C$_{14}$H$_{12}$N$_2$ [(M+H)$^+$]: 209.1072; found, 209.1071.

2-(3-methyl-1H-indol-1-yl)aniline (1j)
1H NMR (400 MHz, CDCl$_3$): δ = 7.80-7.77 (m, 1H), 7.35-7.24 (m, 5H), 7.09 (s, 1H), 6.96-6.89 (m, 2H), 3.48 (s, 2H), 2.54 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ = 143.27, 136.85, 129.14, 129.00, 128.71, 126.28, 125.24, 122.35, 119.69, 119.20, 118.62, 116.37, 112.50, 110.79, 9.81. HRMS calcd for C$_{15}$H$_{14}$N$_2$ [(M+H)$^+$]: 223.1230; found, 223.1232.

2-(1H-imidazol-1-yl)aniline (1k)

1H NMR (300 MHz, DMSO-d$_6$): δ = 7.75 (s, 1H), 7.30 (s, 1H), 7.17-7.11 (m, 1H), 7.11 (s, 1H), 7.05 (d, J = 7.8 Hz, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.67 (t, J = 7.5 Hz, 1H), 4.94 (s, 2H); 13C NMR (75 MHz, DMSO-d$_6$): δ = 143.21, 137.42, 129.02, 128.89, 126.74, 122.44, 120.28, 116.32, 116.05. HRMS calcd for C$_9$H$_9$N$_3$ [(M+H)$^+$]: 160.0869; found, 160.0864.

3.1H NMR, 13C NMR and HRMS spectra

3.1 The spectra of starting materials

2-(1H-pyrrol-1-yl)aniline (1a)
5-methyl-2-(1H-pyrrol-1-yl)aniline (1b)
5-chloro-2-(1H-pyrrol-1-yl)aniline (1c)
5-fluoro-2-(1H-pyrrol-1-yl)aniline (1d)
5-methoxy-2-(1H-pyrrol-1-yl)aniline (1e)
4-chloro-2-(1H-pyrrol-1-yl)aniline (1g)
4-fluoro-2-(1H-pyrrol-1-yl)aniline (1h)
2-(1H-indol-1-yl)aniline (1i)
2-(3-methyl-1H-indol-1-yl)aniline (1j)
2-(1H-imidazol-1-yl)aniline (1k)
3.2 The spectra of products

4-phenylpyrrolo[1,2-a]quinoxaline (4a)
7-methyl-4-phenylpyrrolo[1,2-α]quinoxaline (4b)
7-methoxy-4-phenylpyrrolo[1,2-α]quinoxaline (4c)
7-chloro-4-phenylpyrrolo[1,2-a]quinoxaline (4d)
8-chloro-4-phenylpyrrolo[1,2-a]quinoxaline (4e)
7-fluoro-4-phenylpyrrolo[1,2-α]quinoxaline (4f)
8-fluoro-4-phenylpyrrolo[1,2-a]quinoxaline (4g)
6-phenylindolo[1,2-α]quinoxaline (4i)
7-methyl-6-phenylindolo[1,2-α]quinoxaline (4j)
4-methylpyrrolo[1,2-α]quinoxaline (4k)
4-ethylpyrrolo[1,2-α]quinoxaline (4l)
4,7-dimethylpyrrolo[1,2-a]quinoxaline (4n)
7-chloro-4-methylpyrrolo[1,2-\text{a}]quinoxaline (4o)
7-methoxy-4-methylpyrrolo[1,2-α]quinoxaline (4p)
4-(4-methoxyphenyl)pyrrolo[1,2-a]quinoxaline (4q)
4-(3-fluorophenyl)pyrrolo[1,2-\(a\)]quinoxaline (4r)
4-(4-fluorophenyl)pyrrolo[1,2-α]quinoxaline (4s)
4-(4-fluorophenyl)-7-methylpyrrolo[1,2-α]quinoxaline (4t)
4-(4-methoxyphenyl)-7-methylpyrrolo[1,2-α]quinoxaline (4u)
7-chloro-4-(3-fluorophenyl)pyrrolo[1,2-\(\alpha\)]quinoxaline (4v)
7-chloro-4-(4-fluorophenyl)pyrrolo[1,2-α]quinoxaline (4w)
7-methoxy-4-(4-methoxyphenyl)pyrrolo[1,2-α]quinoxaline (4x)
4-(3-fluorophenyl)-7-methoxypyrrolo[1,2-\(a\)]quinoxaline (4y)
5-(pyrrolo[1,2-α]quinoxalin-4-yl)pentan-2-one (4z)
(Z)-1,3-diphenyl-3-(phenylamino)prop-2-en-1-one (5e)
Acetophenone (5f)

4. Reference
