Supporting Information

Palladium Meets Copper: One-Pot Tandem Synthesis of Pyrido Fused Heterocycle via Sonogashira conjoined Electrophilic Cyclization

Sonu Kumar, Rakesh K. Saunthwal, Trapti Aggarwal, Siva K. Reddy Kotla and Akhilesh K. Verma*

Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi – 110007, India

Email: averma@acbr.du.ac.in

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Table of contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X-ray crystallographic studies</td>
<td>2-3</td>
</tr>
<tr>
<td>2</td>
<td>References</td>
<td>4-4</td>
</tr>
<tr>
<td>3</td>
<td>Copies of 1H NMR, 13C NMR and HRMS</td>
<td>5-104</td>
</tr>
</tbody>
</table>
X-ray crystallographic studies

Figure 1. ORTEP drawing of compound 4b drawn at 50% probability level.

The crystal of compound 4b (CCDC No: 1486060) was generated in CH$_2$Cl$_2$/Hexane. The intensity data for SON-387 was collected on an Bruker Kappa Apex-CCD diffractometer equipped with graphite monochromatic Mo-K$_{\alpha}$ radiation ($\lambda = 0.71073$ Å) at 100(2) K. A multi-scan correction was applied. The structure was solved by the direct methods using SIR-92 and refined by full-matrix least-squares refinement techniques on F^2 using SHELXL972. The hydrogen atoms were placed into the calculated positions and included in the last cycles of the refinement. All calculations were done using Wingx software package3.
Table 1. Crystal data collection and structure refinement parameters for 4b

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C<sub>19</sub>H<sub>14</sub>N<sub>2</sub></td>
</tr>
<tr>
<td>Formula weight</td>
<td>270.32</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2<sub>1</sub>/c</td>
</tr>
<tr>
<td>A</td>
<td>13.739(5) Å</td>
</tr>
<tr>
<td>B</td>
<td>5.908(5) Å</td>
</tr>
<tr>
<td>C</td>
<td>17.319(5) Å</td>
</tr>
<tr>
<td>α (°)</td>
<td>90.000(5)°</td>
</tr>
<tr>
<td>β (°)</td>
<td>91.208(5)°</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90.000(5)°</td>
</tr>
<tr>
<td>Volume</td>
<td>1405.5(14) Å</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.278 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.076 mm<sup>−1</sup></td>
</tr>
<tr>
<td>F(000)</td>
<td>568</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.20 x 0.19 x 0.17 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.64 to 25.00°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-16 ≤ h ≤ 16, -7 ≤ k ≤ 7, -20 ≤ l ≤ 20</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>15507</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2465 [R(int) = 0.0390]</td>
</tr>
<tr>
<td>Completeness to theta = 25.00°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9872 and 0.9850</td>
</tr>
<tr>
<td>Reefinement method</td>
<td>Full-matrix least-squares on F<sup>2</sup></td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2465 / 0 / 190</td>
</tr>
<tr>
<td>Goodness-of-fit on F<sup>2</sup></td>
<td>1.038</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]<sup>a,b</sup></td>
<td>R<sub>1</sub> = 0.0514, wR<sub>2</sub> = 0.1235</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R<sub>1</sub> = 0.0823, wR<sub>2</sub> = 0.1365</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.168 and -0.149 e.Å<sup>−3</sup></td>
</tr>
</tbody>
</table>

^aR = Σ(∥Fo∥ − ∥Fc∥)/Σ ∥Fo∥;
^bwR = {Σ[w(Fo² − Fc²)²]}/Σ[w(Fo²)²]^{1/2}
References

Copies of 1H NMR, 13C NMR and HRMS
1H NMR

3-Phenylbenzo[b][1,6]naphthyridine (4a)
13C NMR

3-Phenylbenzo[b][1,6]naphthyridine (4a)
3-Phenylbenzo[b][1,6]naphthyridine (4a)
\[^1 \text{H NMR} \]

3-(p-Tolyl)benzo[b][1,6]naphthyridine (4b)
13C NMR

3-(p-Tolyl)benzo[b][1,6]naphthyridine (4b)
HRMS

3-(p-Tolyl)benzo[b][1,6]naphthyridine (4b)

Max. 3968.1 counts.

m/z, Da

Intensity, counts

270.1156
1H NMR

3-(4-Butylphenyl)benzo[b][1,6]naphthyridine (4c)
13C NMR

3-(4-Butylphenyl)benzo[b][1,6]naphthyridine (4c)
HRMS

3-(4-Butylphenyl)benzo[b][1,6]naphthyridine (4c)

![Chemical Structure](image)

1 TOF MS: 1.514 to 1.597 min from Sample 1 (TuneSampleID) of 017.wiff

Max. 2713.3 counts.

a=3.49708865074074e-004, b=-0.0127717986953040e+000 (Turbo Spray)
1H NMR

3-(Thiophen-3-yl)benzo[b][1,6]naphthyridine (4d)
13C NMR

3-(Thiophen-3-yl)benzo[b][1,6]naphthyridine (4d)
3-(Thiophen-3-yl)benzo[b][1,6]naphthyridine (4d)

Max. 4317.0 counts.

Int. 262.0565
1H NMR

8-Methyl-3-(p-tolyl)benzo[\(b\)][1,6]naphthyridine (4e)
13C NMR

8-Methyl-3-(p-tolyl)benzo[b][1,6]naphthyridine (4e)
HRMS

8-Methyl-3-(p-tolyl)benzo[b][1,6]naphthyridine (4e)

Max. 5339.3 counts.
1H NMR

3-(4-Ethylphenyl)-8-methylbenzo[b][1,6]naphthyridine (4f)
$^{13}\text{C NMR}$

3-(4-Ethylphenyl)-8-methylbenzo[b][1,6]naphthyridine (4f)
HRMS

3-(4-Ethylphenyl)-8-methylbenzo[b][1,6]naphthyridine (4f)

TOF MS: 0.781 to 1.131 min from Sample 1 (TuneSampleID) of 500014.wiff

a=3.48102545163860160e-004, t0=-6.01277179989930130e+000 (Turbo Spray)

Max. 6265.2 counts.
1H NMR

8-Methoxy-3-phenylbenzo[b][1,6]naphthyridine (4g)
13C NMR

8-Methoxy-3-phenylbenzo[b][1,6]naphthyridine (4g)
HRMS

8-Methoxy-3-phenylbenzo[b][1,6]naphthyridine (4g)

+TOF MS: 0.931 to 1.064 min from Sample 1 (TuneSampleID) of 50007.wiff

a=3.1543272165222890e-004, b=-0.6172717989989940e+000 (Turbo Spray)

Max. 3872.4 counts.
1H NMR

3-(4-(t-Butyl)phenyl)-8-methoxybenzo[b][1,6]naphthyridine (4h)
13C NMR

3-(4-(t-Butyl)phenyl)-8-methoxybenzo[b][1,6]naphthyridine (4h)
3-(4-\((t\)-Butyl)phenyl\)-8-methoxybenzo[\(b\)][1,6]naphthyridine (4h)
1H NMR

7-(4-(Tert-butyl)phenyl)-1,6-naphthyridine (4i)
13C NMR

7-(4-(Tert-butyl)phenyl)-1,6-naphthyridine (4i)
7-(4-(Tert-butyl)phenyl)-1,6-naphthyridine (4i)

Max. 377.8 counts.

TOF MS: 0.831 to 0.881 min from Sample 1 (TuneSampleID) of 500021.sff
a=3.26410503500352640e-004, t0=-6.01277179989930310e+000 (Turbo Spray)
1H NMR

5-Methyl-3-phenyl-5H-pyrido[4,3-b]indole (6a)
13C NMR

5-methyl-3-phenyl-5H-pyrido[4,3-b]indole (6a)
HRMS

5-methyl-3-phenyl-5H-pyrido[4,3-b]indole (6a)

+TOF MS: 0.698 to 0.798 min from Sample 1 of r10.wiff

a=3.40915898402e-004, t0=-6.01277179989930400e+000 (Turbo Spray)

Max. 1421.6 counts.
1H NMR

5-Methyl-3-(p-tolyl)-5H-pyrido[4,3-b]indole (6b)
13C NMR

5-Methyl-3-(p-tolyl)-5H-pyrido[4,3-b]indole (6b)
HRMS

5-Methyl-3-(p-tolyl)-5H-pyrido[4,3-b]indole (6b)

Max. 1338.4 counts.
1H NMR

3-(4-Butylphenyl)-5-methyl-5H-pyrido[4,3-b]indole (6c)
13C NMR

3-(4-Butylphenyl)-5-methyl-5H-pyrido[4,3-b]indole (6c)
3-(4-Butylphenyl)-5-methyl-5H-pyrido[4,3-b]indole (6c)
1H NMR

3-(4-Methoxyphenyl)-5-methyl-5H-pyrido[4,3-b]indole (6d)
13C NMR

3-(4-Methoxyphenyl)-5-methyl-$5H$-pyrido[4,3-b]indole (6d)

![Carbon-13 NMR spectrum of 3-(4-Methoxyphenyl)-5-methyl-$5H$-pyrido[4,3-b]indole (6d)]
HRMS

3-(4-Methoxyphenyl)-5-methyl-5H-pyrido[4,3-b]indole (6d)
1H NMR

5-Methyl-3-(thiophen-3-yl)-5H-pyrido[4,3-b]indole (6e)
13C NMR

5-Methyl-3-(thiophen-3-yl)-5H-pyrido[4,3-b]indole (6c)
5-Methyl-3-(thiophen-3-yl)-5H-pyrido[4,3-b]indole (6c)

HRMS

Max. 343.0 counts.
1H NMR

5-Methyl-3-(4-(trifluoromethyl)phenyl)-5H-pyrido[4,3-b]indole (6f)
13C NMR

5-Methyl-3-(4-(trifluoromethyl)phenyl)-5H-pyrido[4,3-b]indole (6f)
HRMS

5-Methyl-3-(4-(trifluoromethyl)phenyl)-5H-pyrido[4,3-b]indole (6f)

Max. 434.3 counts.

ToF MS: 2.364 to 2.447 min from Sample 1 of 0029.wiff

a=3.723352648292669e-004, t0=-6.012771799889930e+000 (Turbo Spray)

326.1030
1H NMR

5-Methyl-3-phenethyl-5H-pyrido[4,3-b]indole (6g)
13C NMR

5-Methyl-3-phenethyl-5H-pyrido[4,3-b]indole (6g)
5-Methyl-3-phenethyl-5H-pyrido[4,3-b]indole (6g)

Qualitative Compound Report

Compound Table

<table>
<thead>
<tr>
<th>Compound Label</th>
<th>RT (min)</th>
<th>Mass (m/z)</th>
<th>Formula</th>
<th>MFI Formula</th>
<th>MFI Form. (ppm)</th>
<th>DB Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpd 1: C29 H31 N2</td>
<td>11</td>
<td>368.1451</td>
<td>C29 H31 N2</td>
<td>C29 H31 N2</td>
<td>8.53</td>
<td>C29 H31 N2</td>
</tr>
</tbody>
</table>

MSE MS Spectrum

```
Counts vs. Mass-to-Charge (m/z)
```

MSE HS Ionized Spectrum

```
Counts vs. Mass-to-Charge (m/z)
```

MS Spectrum Peak List

<table>
<thead>
<tr>
<th>m/z</th>
<th>Abund</th>
<th>Formula</th>
<th>Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>267.1524</td>
<td>1</td>
<td>C20 H18 N2</td>
<td>M+1</td>
</tr>
<tr>
<td>262.1508</td>
<td>1</td>
<td>C20 H18 N2</td>
<td>M+2</td>
</tr>
<tr>
<td>261.1504</td>
<td>1</td>
<td>C20 H18 N2</td>
<td>M+3</td>
</tr>
<tr>
<td>260.1501</td>
<td>1</td>
<td>C20 H18 N2</td>
<td>M+4</td>
</tr>
<tr>
<td>259.1498</td>
<td>1</td>
<td>C20 H18 N2</td>
<td>M+5</td>
</tr>
</tbody>
</table>

--- End Of Report ---
1H NMR

3-Cyclopropyl-5-methyl-5H-pyrido[4,3-b]indole (6h)
13C NMR

3-Cyclopropyl-5-methyl-5H-pyrido[4,3-b]indole (6h)
HRMS

3-Cyclopropyl-5-methyl-5H-pyrido[4,3-b]indole (6h)
1H NMR

3-Butyl-5-methyl-$5H$-pyrido[4,3-b]indole (6i)
13C NMR

3-Butyl-5-methyl-5H-pyrido[4,3-b]indole (6i)
3-Butyl-5-methyl-5H-pyrido[4,3-b]indole (6i)
1H NMR

3-Phenylisoquinoline (8a)
13C NMR

3-Phenylisoquinoline (8a)
3-Phenylisoquinoline (8a)
1H NMR

3-(4-Ethylphenyl)isoquinoline (8b)
13C NMR

3-(4-Ethylphenyl)isoquinoline (8b)
3-(4-Ethylphenyl)isoquinoline (8b)
1H NMR

3-(3-Methoxyphenyl)isoquinoline (8c)
13C NMR

3-(3-Methoxyphenyl)isoquinoline (8c)
HRMS

3-(3-Methoxyphenyl)isoquinoline (8c)

m/z, Da

50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0 550.0 600.0 650.0 700.0 750.0 800.0 850.0 900.0 950.0 1000.0 1050.0 1100.0 1150.0 1200.0 1250.0

nC_0
1H NMR

3-(4-(Trifluoromethyl)phenyl)isoquinoline (8d)
13C NMR

3-(4-(Trifluoromethyl)phenyl)isoquinoline (8d)
HRMS

3-(4-(Trifluoromethyl)phenyl)isoquinoline (8d)
1H NMR

7-(4-Butylphenyl)-[1,3]dioxolo[4,5-g]isoquinoline (8e)
13C NMR

7-(4-Butylphenyl)-[1,3]dioxolo[4,5-g]isoquinoline (8e)
HRMS

7-(4-Butylphenyl)-[1,3]dioxolo[4,5-g]isoquinoline (8e)
1H NMR

4-([1,3]Dioxolo[4,5-g]isoquinolin-7-yl)-N,N-dimethylaniline (8f)
13C NMR

4-([1,3]Dioxolo[4,5-g]isoquinolin-7-yl)-N,N-dimethylaniline (8f)
4-([1,3]Dioxolo[4,5-g]isoquinolin-7-yl)-N,N-dimethylaniline (8f)
1H NMR

7-(4-(Trifluoromethyl)phenyl-1,3]dioxolo[4,5-g]isoquinoline (8g)
13C NMR

7-(4-(Trifluoromethyl)phenyl)-[1,3]dioxolo[4,5-g]isoquinoline (8g)
HRMS

7-(4-(Trifluoromethyl)phenyl)-[1,3]dioxolo[4,5-g]isoquinoline (8g)
1H NMR

3-Phenylbenzo[4,5]thieno[2,3-c]pyridine (10a)
13C NMR

3-Phenylbenzo[4,5]thieno[2,3-c]pyridine (10a)
HRMS

3-Phenylbenzo[4,5]thieno[2,3-c]pyridine (10a)
1H NMR

3-(p-Tolyl)benzo[4,5]thieno[2,3-c]pyridine (10b)
13C NMR

3-(p-Tolyl)benzo[4,5]thieno[2,3-c]pyridine (10b)
3-(\(p\)-Tolyl)benzo[4,5]thieno[2,3-c]pyridine (10b)

HRMS

\[
\text{Max. 5878.2 counts.}
\]
1H NMR

3-(Thiophen-3-yl)benzo[4,5]thieno[2,3-c]pyridine (10c)
13C NMR

3-(Thiophen-3-yl)benzo[4,5]thieno[2,3-c]pyridine (10c)
3-(Thiophen-3-yl)benzo[4,5]thieno[2,3-c]pyridine (10c)

HRMS
1H NMR

3-(4-(Trifluoromethyl)phenyl)benzo[4,5]thieno[2,3-c]pyridine(10d)
13C NMR

3-(4-(Trifluoromethyl)phenyl)benzo[4,5]thieno[2,3-c]pyridine(10d)
13C NMR

3-(4-(Trifluoromethyl)phenyl)benzo[4,5]thieno[2,3-c]pyridine (10d)

$\text{TOF MS: 0.615 to 0.815 min from Sample 1 (TuneSampleID) of 500012.wiff}$

$a=3.6569778866614525 \times 10^{-4}$, $t_0=-6.0127717998993031 \times 10^0$ (Turbo Spray)

Max. 6056.9 counts.
1H NMR

3-Phenylbenzofuro[3,2-c]pyridine (12a)
13C NMR

3-Phenylbenzofuro[3,2-\textit{c}]pyridine (12a)
3-Phenylbenzofuro[3,2-c]pyridine (12a)
1H NMR

3-(4-(Tert-butyl)phenyl)benzofuro[3,2-c]pyridine (12b)
13C NMR

3-(4-(Tert-butyl)phenyl)benzofuro[3,2-\(c\)]pyridine (12b)
HRMS

3-(4-(Tert-butyl)phenyl)benzofuro[3,2-c]pyridine (12b)
1H NMR

3-(3-Methoxyphenyl)benzofuro[3,2-c]pyridine (12c)
13C NMR

3-(3-Methoxyphenyl)benzofuro[3,2-c]pyridine (12c)
HRMS

3-(3-Methoxyphenyl)benzofuro[3,2-c]pyridine (12c)
1HNMR

3-(4-(Trifluoromethoxy)phenyl)benzofuro[3,2-\textit{c}]pyridine (12d)
13C NMR

3-(4-(Trifluoromethoxy)phenyl)benzofuro[3,2-c]pyridine (12d)
HRMS

3-(4-(Trifluoromethoxy)phenyl)benzofuro[3,2-c]pyridine (12d)