SUPPORTING INFORMATION

A Core Switching Strategy to Pyrrolo[2,3-b]quinolines and Diazocino[1,2-a]indolinones

Alan M. Jones^{a+*}, Stephen Patterson^a, Magali M. Lorion^a, Alexandra M. Z. Slawin^a, and

Nicholas J. Westwood^{a*}

^a School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews,

North Haugh, St Andrews, KY16 9ST (UK)

⁺ Current address: Division of Chemistry and Environmental Science, John Dalton Building,

Manchester Metropolitan University, Manchester, M1 5GD (UK)

Corresponding authors:

(A.M.J.) <u>a.m.jones@mmu.ac.uk</u> +44(0)1612476195

http://www.jonesgroupresearch.wordpress.com

(N.J.W.) njw3@st-andrews.ac.uk +44(0)1334463816 http://chemistry.st-

andrews.ac.uk/staff/njw/group/

Contents

Page 3	S1 Rearrangement of enantio-enriched atropisomer of 1a
Page 4-5	Table S1 Nucleophile screen of the scope of the transformation of 1a to examples of 2
Page 6	Table S2 Optimisation of the sodium methoxide-induced rearrangement of 1a to 2a
Page 7	Table S3 Optimisation of the butylamine-induced rearrangement of 1a to 2i
Page 8	Table S4 ¹ H and ¹³ C NMR based assignment of 4
Page 9	Table S5 Optimisation of the sodium alkoxide-induced rearrangement of 1e to 3a
Page 10	Table S6 X-ray crystallographic data for 2a
Page 12	Table S7 X-ray crystallographic data for 2i
Page 14-65	Copies of ¹ H and ¹³ C NMR Spectra
Page 66	References

Scheme S1 Chiral memory experiment with enantio-enriched *M*-atropisomer of 1a^{S1} with NaOMe lead to ±2a

		Observed		
Nucleophile	[M+H]⁺	, [M+Na]⁺	[M-H] ⁻	m/z
sodium methoxide	353.3	375.3	351.3	351.3ª
<i>n</i> -butylamine	394.4	416.4	392.4	392.4ª
1,4-diaminobutane	409.4	431.4	407.4	407.4ª
acetylethylenediamine	423.4	445.4	421.4	421.4ª
Benzylamine	428.4	450.4	426.4	426.4ª
Aniline ^d	414.4	436.4	412.4	394.0 ^{*,d}
morpholine	408.4	430.4	406.4	406.4ª
(15,25)-2-benzyloxycyclopentylamine ^d	512.6	534.6	510.6	492.0 ^{*,d}
N-methylhydrazine	367.4	389.4	365.4	365.4ª
benzyl carbazate	487.5	509.5	485.5	485.5ª
sodium azide	364.3	386.3	362.3	362.3ª
glycine <i>t</i> -butyl ester. HCl ^d	452.5	474.5	450.5	466.0 ^{*,d}
propan-2-ol ^c	381.4	403.4	379.4	319.0 ^c
propargyl alcohol ^c	377.4	399.4	375.4	319.0 ^c
methyllithium.LiBr complex	337.3	359.3	335.3	335.3ª
allyl magnesium bromide	363.4	385.4	361.4	361.4ª
ethynyl magnesium chloride	347.3	369.3	345.3	345.3ª
methyl magnesium bromide	337.3	359.3	335.3	335.3ª
trimethylsilyl cyanide ^c	348.3	370.3	346.3	319.0 ^c
triphenylmethanethiol	597.7	619.7	595.7	595.7ª
Ethylthioglycolate ^d	427.4	449.4	425.4	439.0 ^{*,d}
Benzylmercaptan	445.5	467.5	443.5	445.5 ^b

Table S1 Nucleophile screen of the scope of the transformation of 1a to examples of 2

Details: Using a Radleys[®] Greenhouse parallel synthesiser, to 18 stirred solutions of **1a** (20 mg) in dry THF (5mL) were added 1.1 equivalents of the relevant nucleophile at room temperature for 16 hours. In a separate study, the four reactions using Grignard reactions were carried out at -78 °C and then allowed to warm to 0 °C after 3 hours. LCMS analysis (ES⁺/ES⁻) of the crude reaction mixtures revealed that 14 / 22 reaction mixtures contained a new product with a *m/z* from either the ES⁻ (^a in table) or ES⁺ (^b in table) spectra coupled with the UV_{254nm} trace;

c no reaction was observed and observed m/z consistent with the presence of starting material 1a; ^d structure of product not determined.

Entry	NaOMe (eq.)	Solvent	Temperature (°C)	Time (min)	Yield (%)
1	1	MeOH	25	10	95
2	2	MeOH	25	10	99
3	10	MeOH	25	10	95
4	2	THF	25	960	45

Table S2 Optimisation of the sodium methoxide-induced rearrangement of 1a to 2a

Details: Variation of reaction conditions and the resulting isolated yields for the methoxide induced azepinoindole rearrangement of **1a** to give **2a**.

entry	eq. <i>n</i> BuNH₂	time (min)	percentage conversion
1	1	10	40
2	1	60	80
3	1	180	95 (74ª)
4	1	960	b
5	2	180	70 (51ª)
6	4	180	b
7	10	180	b

Table S3 Optimisation of the butylamine-induced rearrangement of ${\bf 1a}$ to ${\bf 2i}$

Details: Percentage conversion as estimated by ¹H NMR spectra of the transformation of **1a** to **2i**. ^aIsolated yield (after flash column chromatography); ^bSubstantial degradation was observed.

Proton Assignment	δ ¹H (ppm)	Multiplicity	Integration	J value (Hz)	Carbon Assignment	δ ¹³ C (ppm)
C2- <u>H</u> 2	4.19	t	2H	7.5	C2	49.8
C3- <u>H</u> 2	3.36	t	2H	7.4	C3	25.3
					C3a	119.6
C4-O <u>H</u>	8.55	br s	1H	-	C4	153.1
					C5	178.3
					C5a	126.5
C6- <u>H</u>	8.42	d	1H	2.6	C6	129.1
					C7	129.6
C8- <u>H</u>	7.41	dd	1H	8.9, 2.6	C8	134.8
C9- <u>H</u>	7.28	d	1H	8.8	C9	134.7
					C9a	148.6
					C10a	157.8
					C1′	139.1
					C2′	129.6
C3'- <u>H</u>	7.90	dd	1H	7.7, 1.5	C3′	130.5
C4'- <u>H</u>	7.37	dd	1H	7.6, 1.2	C4'	126.5
C5'- <u>H</u>	7.58	ddd	1H	7.7, 7.7, 1.7	C5′	132.5
C6'- <u>H</u>	7.32	dd	1H	8.0, 1.0	C6'	125.4
					Ar <u>C</u> O₂Et	167.0
OC <u>H</u> ₂CH₃	3.96	q	2H	7.2	OCH_2CH_3	61.1
OCH₂C <u>H</u> ₃	1.06	q	3H	7.2	OCH₂ <u>C</u> H₃	14.1

Table S4 ¹H and ¹³C NMR based assignment of **4** (Derived from 2D ¹H-¹H COSY, ¹H-¹³C HSQC and ¹H-¹³C HMBC NMR experiments).

Table S5 Optimisation of the sodium alkoxide-induced rearrangement of 1e to 3a

Entry	NaOMe (eq.)	Solvent	Temperature (°C)	Time (h)	Yield (%)
1	2	MeOH	25	16	77
2	2	MeOH	64	16	59
3	10	MeOH	25	16	71

Details: Variation of the reaction conditions for the alkoxide induced pyrrolo[2,3-*b*]quinoline rearrangement **3a** from **1e** and the resulting isolated yields.

Table S6 Crystal data and structure refinement details for compound 2a.

	C19.30 118 N2 05.30	
Formula weight	368.36	
Temperature	125(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 7.7594(12) Å	α= 90°.
	b = 19.459(3) Å	β= 106.142(2)°.
	c = 11.8044(19) Å	γ = 90°.
Volume	1712.1(5) Å ³	
Z	4	
Density (calculated)	1.429 Mg/m ³	
Absorption coefficient	0.106 mm ⁻¹	

F(000)	772
Crystal size	.1 x .1 x .01 mm ³
Theta range for data collection	2.08 to 25.49°.
Index ranges	-9<=h<=9, -23<=k<=16, -12<=l<=14
Reflections collected	9839
Independent reflections	3068 [R(int) = 0.0244]
Completeness to theta = 25.49°	96.2 %
Absorption correction	MULTISCAN
Max. and min. transmission	1.00000 and 0.891243
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3068 / 1 / 257
Goodness-of-fit on F ²	1.024
Final R indices [I>2sigma(I)]	R1 = 0.0416, wR2 = 0.0971
R indices (all data)	R1 = 0.0552, wR2 = 0.1051
Extinction coefficient	0.0039(9)
Largest diff. peak and hole	0.455 and -0.445 e.Å ⁻³

 Table S7 Crystal data and structure refinement details for compound 2i.

Formula weight	434.49	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 10.8627(13) Å	⊵= 90°.
	b = 19.295(2) Å	₽= 111.323(6)°.
	c = 11.3504(14) Å	? = 90°.
Volume	2216.1(5) Å ³	
Z	4	
Density (calculated)	1.302 Mg/m ³	
Absorption coefficient	0.090 mm ⁻¹	

F(000)	920
Crystal size	0.200 x 0.010 x 0.010 mm ³
Theta range for data collection	2.11 to 25.34°.
Index ranges	-13<=h<=12, -16<=k<=23, -12<=l<=13
Reflections collected	15426
Independent reflections	3727 [R(int) = 0.0552]
Completeness to theta = 25.34°	92.0 %
Absorption correction	Multiscan
Max. and min. transmission	1.0000 and 0.8690
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3727 / 2 / 300
Goodness-of-fit on F ²	1.192
Final R indices [I>2sigma(I)]	R1 = 0.0654, wR2 = 0.1112
R indices (all data)	R1 = 0.0893, wR2 = 0.1211
Extinction coefficient	0.0060(8)
Largest diff. peak and hole	0.234 and -0.224 e.Å ⁻³

Copies of ¹H and ¹³C NMR spectra: **Compound 1b** ¹H NMR (CDCl₃)

Compound 1b ¹³C NMR (CDCl₃)

Compound 2a ¹H NMR (CDCl₃)

Compound 2a ¹³C NMR (CDCl₃)

Compound 2b ¹H NMR (CDCl₃)

Compound 2b ¹³C NMR (CDCl₃)

Compound 2c ¹H NMR (CDCl₃)

Compound 2c ¹³C NMR (CDCl₃)

Compound 2d ¹H NMR (CDCl₃)

Compound 2d ¹³C NMR (CDCl₃)

Compound 2e ¹H NMR (CDCl₃)

Compound 2e ¹³C NMR (CDCl₃)

Compound 2f ¹H NMR (CDCl₃)

Compound 2f ¹³C NMR (CDCl₃)

Compound 2g ¹H NMR (CDCl₃)

Compound 2g ¹³C NMR (CDCl₃)

Compound 2h ¹H NMR (CDCl₃)

Compound 2h ¹³C NMR (CDCl₃)

Compound 2i ¹H NMR (CDCl₃)

Compound 2i ¹³C NMR (CDCl₃)

Compound 2j ¹H NMR (CDCl₃)

Compound 2j ¹³C NMR (CDCl₃)

Compound 2k ¹H NMR (CDCl₃)

Compound 2k ¹³C NMR (CDCl₃)

Compound 2I ¹H NMR (CDCI₃)

Compound 2I ¹³C NMR (CDCI₃)

Compound 2m ¹H NMR (d₆-DMSO)

Compound 2m ¹³C NMR (d₆-DMSO)

Compound 2n ¹H NMR (CDCl₃)

Compound 2n ¹³C NMR (CDCl₃)

Compound 20 ¹H NMR (CDCl₃)

Compound 20 ¹³C NMR (CDCl₃)

Compound 3a ¹³C NMR (CDCl₃)

Compound 3b ¹H NMR (CDCl₃)

Compound 3b ¹³C NMR (CDCl₃)

Compound 3c ¹H NMR (CDCl₃)

Compound 3c ¹³C NMR (d₆-DMSO)

Compound 3d ¹H NMR (CDCl₃)

Compound 3d ¹³C NMR (CDCl₃)

Compound 3e ¹H NMR (CDCl₃)

Compound 3e¹³C NMR (CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Compound 3f ¹H NMR (d₆-DMSO)

Compound 3f ¹³C NMR (d₆-DMSO)

Compound 3g ¹H NMR (CDCI₃)

Compound 3g ¹³C NMR (d₆-DMSO)

Compound 3h ¹H NMR (CDCl₃)

Compound 3h ¹³C NMR (CDCl₃)

Compound 4 ¹H NMR (CDCl₃)

Compound 4 ¹³C NMR (CDCl₃)

Compound 4 2D NMR (CDCl₃)

Figure S1: ¹H-¹³C HMBC NMR spectrum of 4 showing selected correlations that were used to determine the structure of ring B.

References

S1 A. M.Jones, G. Liu, M. M. Lorion, S. Patterson, A. M. Z. Slawin, N. J. Westwood, *Chem. Eur. J.*, 2011, **17**, 5714.

S2 J. L. C. Marais, W. Pickl, B. Staskun, *J. Org. Chem.*, 1990, **55**, 1969.