Supporting Information

Synthesis and Photophysics of Extended π-conjugated systems of substituted 10-aryl-pyrenoimidazoles

Shanmugam Karthik,^{*a*} Joseph Ajantha,^{*b*} C. M. Nagaraja,^{*c*} Shanmugam Easwaramoorthi*^{*b*} and Thirumanavelan Gandhi*^{*a*}

^a Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014 (India) Email: velan.g@vit.ac.in

^b Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai – 600020, (India)

^cDepartment of Chemistry, Indian Institute of Technology Ropar, Punjab 140001 (India)

Section	Title						
1	Table S1 Photophysical properties of the compounds 5a-5h in different solvents	S2					
2	Fig. S1 UV-Visible absorption and emission spectra of 5a-5h in different solvents	S4					
3	Fig. S2 Absorption spectra of pyrene derivatives 5a-5h in chloroform						
4	Fig. S3 Cyclic voltammograms of pyrene derivatives 5a-5h	S7					
5	Fig. S4 Cyclic voltammetry background (potential window of chloroform)						
6	Fig. S5 Solid state emission spectra of 5b, 5d, 5g and 5h.	S8					
7	Table S2 Optimized geometries of 5a-5h calculated using B3LYP/6-31G*	S9					
8	Table S3 Selected transitions obtained from TD-DFT calculations	S11					
9	Table S4 Crystallographic data and structure refinement details for 5d & 5f	S15					
10	Fig. S6 Calculation of dihedral angles in 5d and 5f	S17					
11	Copies of ¹ H NMR, ¹³ C NMR and Mass spectra of 3a-3h and 5a-5h	S18					

Table of Contents

Τ

Compounds	$\lambda_{abs}(nm) (\epsilon \ 10^5 \ M^{-1} cm^{-1})$	Medium	$\lambda_{\rm F}$	Stokes Shift	$\Phi_{\rm F}$
			(nm)	[cm ⁻¹]	
5a	395	Toluene	463	3718	0.16
	395	THF	464	3764	
	396	DCM	467	3839	0.15
	395	EA	464	3765	0.17
	396	DMSO	475	4199	
	399	Toluene	478	4142	0.18
	386	THF	476	4244	
5b	400	DCM	479	4123	0.17
	399	EA	476	4054	0.14
	396	DMSO	487	4718	
	414	Toluene	452	2031	0.26
	411	THF	459	2545	
5c	411	DCM	463	2733	0.38
	408	EA	458	2676	0.24
	410	DMSO	476	3382	
	414	Toluene	456	2224	0.21
	401	THF	457	3055	
5d	399	DCM	467	3649	0.22
	400	EA	462	3354	0.17
	400	DMSO	475	3947	
5e	435	Toluene	535	4296	0.59

Table S1 Photophysical properties of the compounds 5a-5h in different solvents

	435	DCM	640	7363	0.05
	430	EA	576	5894	0.19
	432	DMSO	707	9003	
	409	Toluene	446	2028	0.45
	408	THF	456	2579	
	409	DCM	462	2804	0.66
5f	407	EA	455	2592	0.43
	408	DMSO	478	3589	
	418	Toluene	475	2870	0.33
	415	THF	476	3087	
5g	416	DCM	475	2985	0.39
	414	EA	473	3012	0.29
	415	DMSO	483	3392	
	408	Toluene	462	2864	0.12
	406	THF	460	2891	
5h	405	DCM	462	3046	0.09
	404	EA	458	2918	0.08
	406	DMSO	467	3217	
		-			1

0.0

420

490

560 Wavelength (nm)

Fig. S1 UV-Visible absorption and emission spectra of 5a-5h in different solvents

700

630

Fig. S2 Absorption spectra of pyrene derivatives 5a-5h in chloroform.

Calculated (blue) and experimental (black) absorption spectra of pyrene derivatives **5a-5h** in chloroform. The calculations were carried at B3LYP/6-31G*level of theory

Fig. S3 Cyclic voltammograms of pyrene derivatives **5a-5h** (10^{-3} M solutions, scan rate of 100 mVs⁻¹ vs Ag/Ag⁺) in 0.1 M solution of tetrabutylammonium hexafluorophosphate in chloroform solvent.

Fig. S4 Cyclic voltammetry background (potential window of chloroform)

CV background was taken in chloroform solvent. Glassy carbon as working electrode, in the presence of 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte.

Fig. S5 Solid state emission spectra of 5b, 5d, 5g and 5h.

Table S2 Optimized geometries of 5a-5h calculated at B3LYP/6-31G*

Compounds	Wavelength (nm)	Osc. Strength	Major Contributions
	387.82	0.0542	HOMO->LUMO (58%), HOMO->L+1 (31%)
5a	358.56	0.0852	H-1->LUMO (13%), HOMO->LUMO (21%), HOMO->L+1 (37%), HOMO->L+2 (15%)
	321.08	0.2102	H-1->L+1 (48%), HOMO->L+2 (13%)
	319.58	0.5742	H-1->LUMO (55%), HOMO->L+2 (18%)
	283.90	0.123	H-3->LUMO (22%), H-3->L+1 (16%), H-2->LUMO (28%)
	277.95	0.2396	H-2->L+1 (48%), HOMO->L+7 (25%)

Table S3 Selected transitions obtained from TD-DFT calculations

Compounds	Wavelength (nm)	Osc. Strength	Major Contributions
	396.29	0.0526	HOMO->LUMO (69%), HOMO->L+1 (22%)
	359.40	0.126	H-1->LUMO (12%), HOMO->LUMO (15%), HOMO->L+1 (46%), HOMO->L+2 (12%)
	322.78	0.2964	H-1->LUMO (38%), H-1->L+1 (19%), HOMO->L+3 (11%)
5b	320.08	0.4113	H-1->LUMO (14%), H-1->L+1 (23%), HOMO->L+2 (27%), HOMO->L+3 (10%)
	310.82	0.1133	H-3->LUMO (14%), H-2->LUMO (12%), H-1->L+1 (29%), HOMO->L+3 (21%)
	302.45	0.1522	H-2->LUMO (52%), HOMO->L+3 (18%)
	287.25	0.1349	H-3->LUMO (45%), H-2->L+1 (12%), H-1->L+2 (19%)
	276.14	0.2939	H-3->LUMO (10%), H-3->L+1 (39%), HOMO->L+5 (11%)

Compounds	Wavelength (nm)	Osc. Strength	Major Contributions
	407.4245	0.181	HOMO->LUMO (70%), HOMO->L+1 (17%)
5c	331.6836	0.1821	H-1->LUMO (11%), HOMO->L+2 (41%)
	330.7016	0.3312	H-1->L+1 (61%)
	296.8026	0.2018	H-2->L+1 (22%), H-1->L+2 (37%), HOMO->L+3 (14%)
	294.6722	0.3231	H-3->LUMO (55%), H-2->L+1 (18%)
	280.7022	0.1001	H-2->L+1 (11%), HOMO->L+5 (39%), HOMO->L+6 (11%)
	278.4766	0.1494	H-4->L+1 (10%), H-2->L+1 (12%), HOMO->L+5 (26%)

Compounds	Wavelength (nm)	Osc. Strength	Major Contributions
	398.5962	0.0942	HOMO->LUMO (54%), HOMO->L+1 (34%)
	381.1705	0.099	HOMO->LUMO (30%), HOMO->L+1 (48%)
	328.6329	0.2852	H-1->LUMO (16%), H-1->L+1 (53%)
5d	326.6071	0.355	H-1->LUMO (17%), H-1->L+1 (11%), HOMO->L+2 (39%)
	288.5346	0.312	H-3->LUMO (29%), H-2->L+1 (22%), HOMO->L+3 (11%), HOMO->L+4 (11%)
	275.7514	0.1356	H-4->L+1 (18%), H-2->L+1 (11%), H-2->L+2 (11%), HOMO->L+5 (17%)
	266.5277	0.1902	H-4->LUMO (14%), H-4->L+1 (25%), H-1->L+3 (10%), HOMO->L+6 (13%)

Compounds	Wavelength (nm)	Osc. Strength	Major Contributions
	533.927637	0.19	HOMO->LUMO (92%)
	333.324381	0.1027	H-1->L+2 (18%), HOMO->L+2 (34%), HOMO->L+3 (17%)
5e	318.985635	0.4847	H-1->L+1 (42%), H-1->L+2 (16%), HOMO->L+3 (10%)
	307.155547	0.1963	H-1->L+2 (17%), HOMO->L+3 (42%), HOMO->L+4 (20%)
	302.059486	0.1023	H-2->L+1 (25%), H-1->L+2 (34%), HOMO->L+4 (17%)
	289.335924	0.1108	H-9->LUMO (10%), H-3->L+1 (63%)

Compounds	Wavelength (nm)	Osc. Strength	Major Contributions
	408.001	0.1923	HOMO->LUMO (76%), HOMO->L+1 (12%)
E f	352.3655	0.1005	H-1->LUMO (71%), HOMO->L+2 (16%)
51	332.8859	0.1833	HOMO->L+2 (48%)
	330.6046	0.2731	H-1->L+1 (62%), HOMO->L+3 (12%)
	297.9438	0.2423	H-2->LUMO (10%), H-2->L+1 (14%), H-1->L+2 (29%), HOMO->L+3 (20%)
	295.5855	0.2721	H-3->LUMO (55%), H-2->L+1 (15%)

Compounds	Wavelength (nm)	Osc. Strength	Major Contributions
5 a	373.4213	0.1424	HOMO->LUMO (87%)
5g	315.0864	0.2132	H-1->LUMO (61%), HOMO->L+1 (20%)
	301.2156	0.3084	H-1->L+1 (24%), HOMO->L+2 (51%)
	277.7031	0.103	H-3->LUMO (40%), H-2->LUMO (18%), H-1->L+2 (17%)

256.1375	0.1585	H-2->L+1 (15%), H-1->L+3 (10%), H-1->L+4 (47%)
373.4213	0.1424	HOMO->LUMO (87%)

Compounds	Wavelength (nm)	Osc. Strength	Major Contributions
	411.1671	0.129	HOMO->LUMO (88%)
	340.165	0.2859	H-1->LUMO (47%), HOMO->L+1 (17%), HOMO->L+2 (13%)
5h	330.4284	0.1913	H-2->LUMO (10%), H-1->L+1 (38%), HOMO->L+2 (14%)
	313.9057	0.2577	H-2->LUMO (31%), H-1->L+1 (17%), HOMO->L+3 (27%)
	293.9805	0.2282	H-2->L+1 (41%), H-1->L+2 (25%), HOMO->L+4 (14%)
	291.6226	0.2347	H-3->LUMO (21%), H-3->L+1 (12%), H-2->L+1 (17%), H-1->L+2 (26%)

Selected transitions obtained from TD-DFT calculation at B3LYP/6-31G* level

Identification code	5d	5f
CCDC No.	CCDC1497027	CCDC1059272
Empirical formula	$C_{38} H_{21} F_3 N_2$	$C_{39}H_{24}N_2O_2$
Formula weight	562.57	552.60
Temperature	295 K	293 K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Mono clinic	triclinic
Space group	P21/n	<i>P</i> -1
a	9.5058(10) Å	10.877(5) Å
b	16.1683(16) Å	11.117(5) Å
с	17.7882(17) Å	11.854(5) Å
α	90°	97.983(5)°
β	93.270(3)°	103.313(5)°
γ	90°	94.203(5)°
Volume	2729.5(5) Å	1373.1(11) Å
Z, calculated density	4, 1.369 mg m ⁻³	2, 1.337 mg m ⁻³
Absorption coefficient	0.094 mm ⁻¹	0.083 mm ⁻¹

 Table S4 Crystallographic data and structure refinement details for 5d and 5f

F(000)	1160	576
Limiting indices	$-12 \le h \le 12$ $-21 \le k \le 21$ $-23 \le l \le 23$	$-14 \le h \le 14$ $-14 \le k \le 14$ $-15 \le l \le 15$
Reflections collected /unique	91714/6824 [$R_{(int)} = 0.0547$]	65484/6810 [R _(int) =0.0359]
Data/restraint/parameters	6824/0/388	6810/0/388
Goodness- of-fit on F ²	1.289	1.019
Final R indices [I> 2 sigma(I)]	$R_1 = 0.0621$ $wR_2 = 0.1757$	$R_1 = 0.0516 \\ wR_2 = \\ 0.1264$
R indices (all data)	$R_1 = 0.0990$ w $R_2 = 0.1944$	$R_1 = 0.0747 \\ wR_2 = 0.1413$

Fig. S6 Calculation of dihedral angles in 5d and 5f

5f

Copies of ¹H NMR, ¹³C NMR and Mass spectra of **3a-3h** and **5a-5h**

¹H NMR spectrum of **3a** (400 MHz, DMSO-d⁶)

¹³C NMR spectrum of 3a (100 MHz, DMSO-d⁶)

ESI mass spectrum of 3a

Bruker Compass DataAnalysis 4.1

printed: 9/29/2016 7:39:36 PM

by: CPR_OUT

¹H NMR spectrum of 5a (400 MHz, CDCl₃)

ESI mass spectrum of 5a

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

¹H NMR spectrum of **3b** (400 MHz,DMSO-d⁶)

¹³C NMR spectrum of **3b** (100 MHz, DMSO-d⁶)

ESI mass spectrum of 3b

Bruker Compass DataAnalysis 4.1

printed: 9/29/2016 7:48:15 PM

by: CPR_OUT

¹H NMR spectrum of **5b** (400 MHz, CDCl₃)

ESI mass spectrum of 5b

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Analysis Name D:\D Method Tund Sample Name DM- Comment C38 Acquisition Paramete Source Type E Focus A Scan Begin 5 Scan End 7 Intens. x10 ⁵	hata\SEPT-2016\DM e_pos_NAICSI-500/ VIT-4-OCH3 H24N2O er ESI Active 50 m/z 700 m/z	I-VIT-4-OCH3.d A.m Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 3700 V -500 V 900.0 Vpp	Operator D Instrument m Set Nebulize Set Dry Heat Set Dry Gas	MIN IaXis impact 2820 r 0.3 Bar er 180 °C 4.0 l/min	01.00081
Method Tune Sample Name DM- Comment C38 Acquisition Paramete Source Type E Focus A Scan Begin 5 Scan End 7 Intens. x10 ⁵	e_pos_NAICSI-500/ VIT-4-OCH3 H24N2O er ssi Active 50 m/z '00 m/z	A.m Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 3700 V -500 V 900.0 Vpp	Operator D Instrument m Set Nebulize Set Dry Heat Set Dry Gas	M IN naXis impact 2820 r 0.3 Bar er 180 °C 4.0 l/min	01.00081
Sample Name DM- Comment C38 Acquisition Paramete Source Type E Focus A Scan Begin 5 Scan End 7 Intens. x10 ⁵	VIT-4-OCH3 H24N2O er ESI Active 50 m/z 700 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 3700 V -500 V 900.0 Vpp	Instrument m Set Nebulize Set Dry Heat Set Dry Gas	naXis impact 2820 r 0.3 Bar er 180 °C 4.0 l/min	01.00081
Comment C38 Acquisition Paramete Source Type E Focus A Scan Begin 5 Scan End 7 Intens	H24N2O ESI Active 00 m/z 700 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 3700 V -500 V 900.0 Vpp	Set Nebulize Set Dry Heat Set Dry Gas	r 0.3 Bar er 180 °C 4.0 l/min	
Acquisition Paramete Source Type E Focus A Scan Begin 5 Scan End 7	er ESI Active 50 m/z 700 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 3700 V -500 V 900.0 Vpp	Set Nebulize Set Dry Heat Set Dry Gas	r 0.3 Bar er 180 °C 4.0 l/min	
Source Type E Focus A Scan Begin 5 Scan End 7 Intens. x10 ⁵	ESI Active 50 m/z 700 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 3700 V -500 V 900.0 Vpp	Set Nebulize Set Dry Heat Set Dry Gas	r 0.3 Bar er 180 °C 4.0 I/min	
Focus A Scan Begin 5 Scan End 7 Intens. x10 ⁵	Active 50 m/z 700 m/z	Set Capillary Set End Plate Offset Set Collision Cell RF	3700 V -500 V 900.0 Vpp	Set Dry Heat Set Dry Gas	er 180 °C 4.0 l/min	
Scan Begin 5 Scan End 7 Intens. x10 ⁵ -	30 m/z 700 m/z	Set Collision Cell RF	-500 V 900.0 Vpp	Set Dry Gas	4.0 i/min	
Intens. x10 ⁵	00 11/2	Set Collision Cell IV	300.0 vpp	Sot Divort Va	Source	
Intens. x10 ⁵				Set Divert va	ave Source	
x10 ⁵			DM	-VIT-4-OCH3.d: +MS. 0	.1-0.1min #3-8, 100	%=308360
				525.1955		
1						
-						
2-						
-						
.1						
1-						
1			44	47.0685		
o <u>1</u> ,,			· · · · · · ·			,,]
100	200	300	400	500	600	m/z
Intens.			525.1955	+MS, 0	.1-0.1min #3-8, 100	%=308360
x10 ³						
2.5						
2.0						
1.5						
1.0						
0.5						
0.5	504.1409	512.5036		540.53	346	
0.0	00 510	0 520	53	0 540	550	m/z
	•			010		

Bruker Compass DataAnalysis 4.1

printed: 9/27/2016 4:53:43 PM

¹H NMR spectrum of **3c** (400 MHz, DMSO-d⁶)

¹³C NMR spectrum of 3c (100 MHz, DMSO-d⁶)

S26

ESI mass spectrum of 3c

printed: 10/4/2016 4:42:05 PM

by: DM IN

-9.149 -9.128 -9.128 -9.128 -9.128 -9.128 -9.128 -9.128 -9.168 -9.168 -9.168 -9.168 -9.168 -1.799 -7.799 -7.799 -7.799 -7.799 -7.799 -7.799 -7.777 -7.779 -7.779 -7.779 -7.779 -7.779 -7.709 -7.709 -7.709 -7.709 -7.700-7.7

¹³C NMR spectrum of 5c (100 MHz, CDCl₃)

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Bruker Compass DataAnalysis 4.1

printed: 9/27/2016 4:47:24 PM

by: DM IN

¹³C NMR spectrum of 3d (100 MHz, DMSO-d⁶)

ESI mass spectrum of 3d

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Analysis Info				A	cquisition Da	ate 10/4/20	016 4:48:50 P	М
Analysis Name	D:\Data\OCT-201	6\DM-VIT-3D-NH.d						
Method	Tune_pos_NAICS	6I-500.m		C	perator	DM IN		
Sample Name	DM-VIT-3D-NH			Ir	strument	maXis imp	pact 282001.	00081
Comment	C24H13N2F3							
Acquisition Par	ameter							
Source Type	ESI	Ion Polarity	Posit	ive	Set Neb	ulizer	0.3 Bar	
Focus	Active	Set Capillary	3700	V	Set Dry	Heater	180 °C	
Scan Begin	50 m/z 600 m/z	Set End Plate Of Set Collision Cel	IISEL -500	V) Vnn	Set Dry	Gas art Valve	4.0 I/min	
Scall Ella	000 11/2	Get Collision Cel	1111 300.0	o vpp	Set Dive	al valve	Source	
Intens.				C	M-VIT-3D-NH	.d: +MS, 0.0m	nin #2, 100%=1	10105
x10 ⁵						199000 - 199200 Miles • 19920 Subara		
1.5								
-				387.11	.09			
1.0								
-								
0.5								
-								
0.01	100	200	200	الد هدر هذا	100	F00		
	100	200	300	2	100	500		m/z
Intens.			3	87.1109		+MS, 0.0m	nin #2, 100%=1	10105
1.0-								
0.8-								
0.0								
0.6-								
0.4-								
0.2-				1				
	353.3059	365.1160371.1091	381.0818					
340	350	360 370	380	390	400	410	420	m/z
Meas m/z #	Ion Formula	m/z err [nnm] mSi	iama #Sia	ima Score	rdh e	Conf N-Ru		
387.1109 1	C24H14F3N2 387.	1104 -1.3	30.2	1 100.00	17.5 eve	n (ok	

Bruker Compass DataAnalysis 4.1

printed: 10/4/2016 4:50:10 PM

by: DM IN

¹³C NMR spectrum of 5d (100 MHz, CDCl₃)

563.1726 1 C38H22F3N2 563.1730 0.7 15.6 1 100.00 27.5 even ok

¹³C NMR spectrum of 3e (100 MHz, DMSO-d⁶)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

ESI mass spectrum of 3e

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Analysis Info Acquisition Date 10/4/2016 5:09:19 PM D:\Data\OCT-2016\DM-VIT-3E-NH.d Analysis Name Method Tune_pos_NAICSI-500.m DM IN Operator Sample Name DM-VIT-3E-NH Instrument maXis impact 282001.00081 C23H13N3O2 Comment **Acquisition Parameter** Source Type ESI Ion Polarity Positive Set Nebulizer 0.3 Bar Focus Scan Begin Scan End Set Capillary Set End Plate Offset 3700 V -500 V Set Dry Heater Set Dry Gas 180 °C 4.0 l/min Active 50 m/z 600 m/z 900.0 Vpp Set Collision Cell RF Set Divert Valve Source Intens. DM-VIT-3E-NH.d: +MS, 0.1-0.2min #8-9, 100%=14235 x104 353.2984 1.5-1.0-0.5-299.0452 0.0 200 150 250 300 350 m/z Intens. +MS, 0.1-0.2min #8-9, 100%=14235 4000 3000 2000 364.1077 1000 355.3028 365,1088 371.0955 Ш 0 356 358 360 362 364 366 368 370 m/z Meas. m/z # Ion Formula m/z err [ppm] mSigma # Sigma Score rdb e⁻Conf N-Rule 364.1077 1 C23H14N3O2 364.1081 0.9 25.8 100.00 18.5 even ok 1

Bruker Compass DataAnalysis 4.1

printed: 10/4/2016 5:11:38 PM

PM by: DM IN

e⁻Conf # Sigma # Ion Formula m/z mSigma Score rdb err [ppm] 540.1707 540.1704 1 C37H22N3O2 0.5 12.3 1 100.00 28.5 even ok

printed: 9/27/2016 5:08:22 PM

by: DM IN

¹³C NMR spectrum of **3f** (100 MHz, DMSO-d⁶)

ESI mass spectrum of 3f

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Bruker Compass DataAnalysis 4.1

377.1284

1

C25H17N2O2

377.1285

0.0

4.5

1

100.00

18.5

even

ok

printed: 10/4/2016 5:21:20 PM

by: DM IN

ESI mass spectrum of 5f

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Ana

Analysis Info		Acquisition Dat	e 9/27/2016 5:16:56 PM
Analysis Name	D:\Data\SEPT-2016\DM-VIT-4-EST.d		
Method	Tune_pos_NAICSI-500A.m	Operator	DM IN
Sample Name	DM-VIT-4-EST	Instrument	maXis impact 282001.00
Comment	C39H24N2O2		

pact 282001.00081

¹H NMR spectrum of **3g** (400 MHz, DMSO-d⁶)

¹³C NMR spectrum of **3g** (100 MHz, DMSO-d⁶)

ESI mass spectrum of 3g

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Bruker Compass DataAnalysis 4.1

printed: 10/4/2016 5:34:21 PM

by: DM IN

¹H NMR spectrum of 5g (400 MHz, CDCl₃)

¹³C NMR spectrum of 5g (100 MHz, CDCl₃)

48.17 41.71 37.63 35.68 35.49 32.91 31.95 31.44	31.24 29.92 29.80 22.9.80 22.8.35 27.34 27.34 26.95 26.95 26.95	22529 22409 23.14 22.73 22.73 22.73 22.73 22.73 22.73 18.61

545.2010

1

C41H25N2

545.2012

-0.4

9.9

1

100.00

30.5

even

ok

¹³C NMR spectrum of **3h** (100 MHz, DMSO-d⁶)

ESI mass spectrum of 3h

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Bruker Compass DataAnalysis 4.1

printed: 10/4/2016 5:44:22 PM

22 PM by: DM IN

¹H NMR spectrum of **5h** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5h** (100 MHz, CDCl₃)

