Supplementary Information for

Chelated charge assisted halogen bonding enhanced halide recognition by a pyridinium-iodotriazolium axle containing [2]rotaxane

Alexander E. Hess and Paul D. Beer*

Synthesis – General Remarks

All commercial solvents and reagents were used as purchased, unless otherwise stated. Anhydrous solvents were degassed with N₂ and dried by passing them through an MBraun-800 column. Triethylamine was distilled and stored over KOH pellets. Tetrabutylammonium (TBA) salts and Cu(MeCN)₄PF₆ were stored in a vacuum desiccator with P₂O₅ desiccant. TBTA was prepared according to a literature procedure.¹¹ Water was distilled and micro-filtered using a Milli-Q Millipore machine. Chromatography was undertaken using silica gel (particle size: 40-63 μm) or preparative TLC plates (20 x 20 cm, 1 cm silica thickness). Size exclusion chromatography was carried out using Biobeads SX-1 and CHCl₃ used as eluent. ¹H, ¹³C and ¹⁹F NMR spectra were recorded using Varian Mercury 300, Bruker AVIII400 and Bruker AVIII500 spectrometers. Mass spectra were recorded on a Waters LCT Premier instrument (low resolution MS) or a Bruker μTOF instrument (high resolution MS).

¹H NMR Titration Protocol

Titration experiments were performed on a Bruker AVIII500 spectrometer operating at 500 MHz for ¹H NMR and at a temperature of 298 K. An initial volume of 0.5 mL of host rotaxane at a concentration of 1.5 mM was used. Solutions of the respective anions (50 mM) as their TBA salts were added in aliquots, with spectra recorded at 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0, 10.0 equivalents added. Association constants were calculated from the data obtained using the software package WinEQNMR², following the internal pyridinium proton b. An estimate of the association constant and the observed chemical shifts of proton b from each spectrum recorded were added to the programs input file. Refinement of the data using a non-linear least-squares regression analysis gave an optimised fit between the observed and calculated data. Comparison of the experimental and
calculated binding isotherms confirmed that a 1:1 binding model was appropriate with all anions studied.

Characterisation of axle precursors 3 – 6

Terphenyl-stoppered mono-methyl nicotinic ester 3

Figure S1 1H NMR spectrum of 3 (CDCl$_3$, 298 K, 400 MHz).

Figure S2 13C NMR spectrum of 3 (CDCl$_3$, 298 K, 101 MHz).
Figure S3 GCMS-EI mass spectrum of 3.

Terphenyl-stoppered nicotinic acid 4

Figure S4 1H NMR spectrum of 4 (DMSO-d_6, 298 K, 400 MHz).
Figure S5 13C NMR spectrum of 4 (DMSO-d_6, 298 K, 101 MHz).

Figure S6 High resolution ESI mass spectrum of 4.
Terphenyl-stoppered bis-amide azide 5

Figure S7 1H NMR spectrum of 5 (1:1 CDCl₃-CD₃OD, 298 K, 400 MHz).

Figure S8 13C NMR spectrum of 5 (1:1 CDCl₃-CD₃OD, 298 K, 101 MHz).
Figure S9 High resolution ESI mass spectrum of 5.

Terphenyl-stoppered bis-amide pyridinium azide axle precursor 6.Cl

Figure S10 1H NMR spectrum of 6.Cl (CDCl$_3$, 298 K, 400 MHz).
Figure S11 13C NMR spectrum of 6.Cl (CD$_3$CN, 298 K, 101 MHz).

Figure S12 High resolution ESI mass spectrum of 6.Cl.
Characterisation of rotaxanes 10.PF$_6$ and 11.PF$_6$

Triazole Rotaxane 10.PF$_6$

Figure S13 1H NMR spectrum of rotaxane 10.PF$_6$ (1:1 CDCl$_3$-CD$_3$OD, 298 K, 500 MHz).

Figure S14 13C NMR spectrum of rotaxane 10.PF$_6$ (1:1 CDCl$_3$-CD$_3$OD, 298 K, 126 MHz).
Figure S15 High resolution ESI mass spectrum of rotaxane 10.PF$_6$.

Figure S16 Truncated 1H-1H ROESY NMR spectrum of rotaxane 10.PF$_6$ with 10 through space coupling interactions highlighted with grey circles (1:1 CDCl$_3$-CD$_3$OD, 298 K, 500 MHz).
Iodotriazole rotaxane 11.PF₆

Figure S17 1H NMR spectrum of rotaxane 11.PF₆ (1:1 CDCl₃-CD₃OD, 298 K, 500 MHz).

Figure S18 13C NMR spectrum of rotaxane 11.PF₆ (1:1 CDCl₃-CD₃OD, 298 K, 126 MHz).
Figure S19 High resolution mass spectrum of rotaxane 11.PF$_6$.

Figure S20 Truncated 1H-1H ROESY NMR spectrum of rotaxane 11.PF$_6$ with 8 through space coupling interactions highlighted with grey circles (1:1 CDCl$_3$-CD$_3$OD, 298 K, 500 MHz).
Characterisation of rotaxanes 12.(PF₆)₂ and 13.(PF₆)₂

Triazolium Rotaxane 12.(PF₆)₂

Figure S21 ¹H NMR spectrum of rotaxane 12.(PF₆)₂ (1:1 CDCl₃-CD₃OD, 298 K, 500 MHz).

Figure S22 ¹³C NMR spectrum of rotaxane 12.(PF₆)₂ (1:1 CDCl₃-CD₃OD, 298 K, 126 MHz).
Figure S23 High resolution mass spectrum of rotaxane 12.(PF$_6$)$_2$.

Figure S24 1H NMR spectrum of rotaxane 13.(PF$_6$)$_2$ (1:1 CDCl$_3$-CD$_3$OD, 298 K, 500 MHz).
Figure S25 13C NMR spectrum of rotaxane 13.(PF$_6$)$_2$ (1:1 CDCl$_3$-CD$_3$OD, 298 K, 126 MHz).

Figure S26 High resolution mass spectrum of rotaxane 13.(PF$_6$)$_2$.
Figure S27 Changes in the 1H NMR spectrum of HB rotaxane 10.PF$_6$ on addition of increasing equivalents of TBABr (45:45:10 CDCl$_3$-CD$_3$OD-D$_2$O, 500 MHz, 298 K).

Figure S28 Changes in the 3H NMR spectrum of HB rotaxane 10.PF$_6$ on addition of increasing equivalents of TBAI (45:45:10 CDCl$_3$-CD$_3$OD-D$_2$O, 500 MHz, 298 K).
Figure S29 Changes in the 1H NMR spectrum of XB rotaxane 11.PF$_6$ on addition of increasing equivalents of TBABr (45:45:10 CDCl$_3$-CD$_3$OD-D$_2$O, 500 MHz, 298 K).

Figure S30 Changes in the 1H NMR spectrum of XB rotaxane 11.PF$_6$ on addition of increasing equivalents of TBAI (45:45:10 CDCl$_3$-CD$_3$OD-D$_2$O, 500 MHz, 298 K).
Figure S31 Changes in the 1H NMR spectrum of HB rotaxane 12.(PF$_6$)$_2$ on addition of increasing equivalents of TBACl (45:45:10 CDCl$_3$-CD$_3$OD-D$_2$O, 500 MHz, 298 K).

Figure S32 Changes in the 1H NMR spectrum of HB rotaxane 12.(PF$_6$)$_2$ on addition of increasing equivalents of TBABr (45:45:10 CDCl$_3$-CD$_3$OD-D$_2$O, 500 MHz, 298 K).
Figure S33 Changes in the 1H NMR spectrum of HB rotaxane 12.(PF$_6$)$_2$ on addition of increasing equivalents of TBAI (45:45:10 CDCl$_3$-CD$_3$OD-D$_2$O, 500 MHz, 298 K).

Figure S34 Changes in the 1H NMR spectrum of XB rotaxane 13.(PF$_6$)$_2$ on addition of increasing equivalents of TBACl (45:45:10 CDCl$_3$-CD$_3$OD-D$_2$O, 500 MHz, 298 K).
Figure S35 Changes in the 1H NMR spectrum of XB rotaxane 13.(PF$_6$)$_2$ on addition of increasing equivalents of TBAI (45:45:10 CDCl$_3$-CD$_3$OD-D$_2$O, 500 MHz, 298 K).

References