Supporting Information for

Tunable multicolor emissions in monocomponent gel system by varying solvents, temperature and fluoride anion

Xuelei Pang, † Xudong Yu, †,* Dongyan Xie, † Yajuan Li, † Lijun Geng, † Jujie Ren, †

Xiaoli Zhen†

†College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70,

Shijiazhuang 050080, PR China
Scheme S1 the synthesis procedure of N1

The synthesis of 1-3 could be seen from our previous literature.13b

Synthesis of 4-diamine-1, 8-naphthalic anhydride-N-haxanioc acid imide-N-ethyl amine-3-β-cholest-5-en-3-yl-ester-N-Lysine acid ethyl ester (4)

The compound 3 (1mmol, 843 mg), 8 mL hydrazine hydrate were refluxed in ethanol for 3 days, the reaction mixture was then concentrated and purified by chromatography (SiO\textsubscript{2}, CHCl\textsubscript{3}/CH\textsubscript{3}OH=10:1) to give 3 as a yellow solid (mg, yield: 30%). Mp: 186-189 °C. 1HNMR (500M, CDCl\textsubscript{3}, \(\delta\)): 0.60 (s, 3H), 0.83-1.59 (m, 39H), 1.76-1.92(m, 5H), 2.03-2.06 (t, 2H, \(J=6Hz\)),2.15-2.28(m, 2H), 2.99-3.01(t, \(J=6Hz\)), 3.31(s, 1H), 3.96-3.99 (T, 2H, \(J=8Hz\)), 4.29 (m, 1H), 4.63(s, 1H), 5.28(s, 1H), 6.97-6.99 (t, 1H, \(J=5.0 Hz\)), 7.22-7.24 (d, 1H, \(J=8.5Hz\)), 7.60-7.63 (t, 1H, \(J=8 Hz\)), 7.75-7.77 (d, 1H, \(J=5.5Hz\)), 8.26-8.28 (d, 1H, \(J=8.5Hz\)), 8.39-8.41 (d, 1H, \(J=7.5Hz\)),8.59-8.61 (d, 1H, \(J=8.5Hz\)), 9.10 (s, 1H); 13CNMR (125M, DMSO-\textsubscript{d}\textsubscript{6}, \(\delta\)): 11.57, 18.47,18.89, 20.51, 22.40, 22.64, 23.46, 23.71, 25.14, 26.38,
27.38, 27.50, 27.73, 27.89, 31.14, 35.27, 35.59, 35.87, 36.45, 41.68, 49.29, 55.56, 55.83, 72.98, 106.45, 110.80, 116.14, 118.67, 119.51, 120.52, 121.70, 122.04, 124.96, 126.45, 128.31, 129.26, 130.82, 133.62, 139.64, 142.10, 146.38, 155.88, 156.31, 162.90, 172.32. MS for calc. for. (C_{48}H_{69}N_{5}O_{5}+Na)^+ 819.5; Found: 819.0.

Synthesis of N1

Compound 4 (1 mmol, 823 mg) and salicylaldehyde (1 mmol, 98 mg) were refluxed in ethanol for 24 h. The reaction mixture was concentrated and purified by chromatography (SiO_2, CHCl_3/CH_3OH=100:1 to 20:1) to give 3 as an orange solid (461 mg, yield: 50%). Mp: 203-206 °C; ^1HNMR (500M, DMSO-d_6) 6: 0.53 (s, 3H, CH_3), 0.62-0.64 (d, 3H, J=10Hz), 0.82-1.76 (m, 40H), 1.80-1.82 (d, 1H, J=12 Hz), 2.04-2.07 (t, 2H, J=7.5Hz), 2.12-2.24(m, 2H)2.98-3.08(m, 4H), 3.99 (s, 2H), 4.28 (s, 1H), 5.20 (s, 1H), 6.89-6.94 (q, 3H), 7.23-7.26 (t, 1H, J=7.5Hz), 7.63-7.64 (d, 1H, J=8.5Hz), 7.74-7.84 (m, 3H), 8.37-8.38 (d, 1H, J=8.5Hz), 8.47-8.49 (d, 1H, J=7Hz), 8.80-8.84 (t, 2H, J=7.5Hz), 10.22 (s, 1H), 11.48 (s, 1H). ^13CNMR (125M, DMSO-d_6, 6): 11.57, 18.47, 18.89, 20.51, 22.40, 22.64, 23.46, 23.71, 25.14, 26.38, 27.38, 27.50, 27.73, 27.89, 31.14, 35.27, 35.59, 35.87, 36.45, 41.68, 49.29, 55.56, 55.83, 72.98, 106.45, 110.80, 116.14, 118.67, 119.51, 120.52, 121.70, 122.04, 124.96, 126.45, 128.31, 129.26, 130.82, 133.62, 139.64, 142.10, 146.38, 155.88, 156.31, 162.90, 163.62, 172.32. HRMS for calc. for. (C_{55}H_{73}N_{5}O_{6}+Na)^+: 922.5459; Found: 922.5562.

![Image](image_url)

Fig. S1 The photos of the N1 organogels in different organic solvents. From left to right: dichloromethane, n-propanol, isopropanol, acetone, n-butanol, ethanol, benzene.
Fig. S2 the photos of the transparent gel in benzene.

Fig. S3 Plots of T_{gel} (gel collapsing temperature) of N1 versus solvents, unit: °C.
Fig. S4 the fluorescent spectra of N1 aggregates in solvent mixture of CH$_2$Cl$_2$ and benzene with different volume ratios.

Fig. S5 a) Photos of N1 xerogels evaporated from different kind of organic solvents.
From left to right: dichloromethane, n-propanol, isopropanol, acetone, n-butanol, ethanol, benzene; b) fluorescent spectra of xerogels.

Table S2 The absorption peaks of N1 in solution (10^{-5} M) and gel (25 mg/mL).

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Solution(nm)</th>
<th>Gel(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>435</td>
<td>489</td>
</tr>
<tr>
<td>n-propanol</td>
<td>459</td>
<td>442</td>
</tr>
<tr>
<td>isopropanol</td>
<td>459</td>
<td>456</td>
</tr>
<tr>
<td>acetone</td>
<td>444</td>
<td>436</td>
</tr>
<tr>
<td>butanol</td>
<td>458</td>
<td>442</td>
</tr>
<tr>
<td>ethanol</td>
<td>457</td>
<td>461</td>
</tr>
<tr>
<td>benzene</td>
<td>431</td>
<td>460</td>
</tr>
</tbody>
</table>

Fig. S6 UV-vis spectra of N1 gels in different organic solvents.
Fig. S7 Temperature dependent fluorescence changes of N1 organogel in benzene (5 mg/200 μL) from 20 to 180 °C.

Fig. S8 CD spectra of the gel (25 mg/mL) in different organic solvents.
Fig. S9 FT-IR spectra of these N1 xerogels from different organic solvents.

Fig. S10 the gel N1 in CH$_2$Cl$_2$ and sol triggered by fluoride anions.

Fig. S11 the gel N1 in benzene and sol triggered by fluoride anions.
Fig. S12 1HNMR titration of N1 upon the addition of F^-.

Fig. S13 1HNMR spectra of 4 in DMSO-d_6.

Chemical shift/ppm

Fig. S14 13C NMR spectra of 4 in DMSO-d_6.

Fig. S15 MS spectrum of compound 4.
Fig. S16 1H NMR spectra of N1 in DMSO-d_6.

Fig. S17 13C NMR spectra of N1 in DMSO-d_6.
Fig. S18 HR-MS spectra of N1.

Fig. S19 MS spectra of N1.