Supporting Information

Visible-light induced phenylchalcogenyl-oxygenation of activated allenes with ambient air as sole oxidant

Gullapalli Kumaraswamy,* Swargam Vijaykumar, Kukkadapu Ankamma and Vy kunthapu Narayanarao

Table of Contents

1. General information, Synthetic procedure & References 2-6
2. Copies of 1H and 13C NMR spectra for all compounds 7-49
General information:

All reactions were conducted under open air atmosphere. Apparatus used for reactions were oven dried. THF was distilled over sodium benzophenone ketyl before use. MeCN purchased directly from the commercial suppliers and used without further purification. Starting materials (1a, 8a, 4m-q), 8c, 4j, 4k, 4l, 6a, 10a, 4b, 4c, 4d, 4e, 4f-g, and 4q were prepared according to the reported procedure. All other chemicals used were commercially available. Progress of the reactions was monitored by TLC on pre-coated silica gel 60 F-254. Evaporation of solvents was performed at reduced pressure on a rotary evaporator. Column chromatography was carried out with silica gel grade 60-120 and 100-200 mesh. 1H NMR spectra were recorded at 300, 400 & 500 MHz and 13C NMR 75, 100 & 125 MHz in CDCl3. Chemical shifts (δ) are reported in ppm. Tetramethylsilane (δ = 0.00 ppm for 1H) and CDCl3 (δ = 77.00 ppm for 13C) were used as the internal standard. Scalar coupling constants (J) are reported in hertz (Hz). The following abbreviations are used to designate the multiplicities: s = singlet, d = doublet, t = triplet, dd = doublet of doublet,ddd = doublet of doublet of doublet, m = multiplet, br.s = broad singlet. Mass spectral data were compiled using MS (ESI), and High resolution mass spectra (HRMS) were recorded by ESI probe in positive mode using ORBITRAP analyzer.

Electrochemical measurements were performed on a PC-controlled CH instruments model CHI 620C electrochemical analyzer. The experiments were performed in a 1 mM phenyl allene solution in CAN at scan rate of 100 mV s⁻¹ using 0.1 M tetrabutyl ammonium perchlorate (TBAP) as supporting electrolyte. The working electrode was glassy carbon, a standard calomel electrode (SCE) was the reference electrode and platinum wire was an auxiliary electrode. After a cyclic voltammogram (CV) had been recorded, ferrocene was added, and a second voltammogram was measured.

The UV spectrum was recorded on a HITACHI U-2910 double beam UV/VIS spectrophotometer.
Figure 1. 3-Phenyl propa-1,2-diene 1a oxidation potential in MeCN

Figure 2. 3-Phenyl propa-1,2-diene 1a reductive potential in MeCN
Figure 3. UV spectrum of 3-phenyl propa-1,2-diene 1a and PhSeSePh, 2a in MeCN.
Figure 4. Irradiation of reaction mixture with two 7W Day light white LED bulbs [6500K, 42mA (220-240Vac 50Hz) PHILIPS, Made in India]

References:
TLC images of 3a with different intervals:
3a
Z:E mixture spectra (crude)
3ab
Z:E=9:1 mix

3ab
Z:E=9:1 mix
$Z : E = 1:1$