Enantioselective Total Synthesis and Structural Assignment of Callyspongiolide

Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana, 47907, USA

Table of Contents:

Page:

1H and 13C NMR Spectra of Reported Compounds..S2-S64
Chiral HPLC Chromatograms...S65
1H and 13C NMR Spectra of Reported Compounds:

Figure S1. 1H NMR (500 MHz, CDCl$_3$) of crude homoallylic alcohol 7.
Figure S2. 1H NMR (500 MHz, CDCl$_3$) of homoallylic alcohol 7.
Figure S3. 13C NMR (125 MHz, CDCl$_3$) of homoallylic alcohol 7.
Figure S4. 1H NMR (500 MHz, CDCl$_3$) of diene 12.
Figure S5. 13C NMR (125 MHz, CDCl$_3$) of diene 12.
Figure S6. 1H NMR (500 MHz, CDCl$_3$) of pyranone 13.
Figure S7. 13C NMR (125 MHz, CDCl$_3$) of pyranone 13.
Figure S8. 1H NMR (500 MHz, CDCl$_3$) of lactone 14.
Figure S9. 13C NMR (125 MHz, CDCl$_3$) of lactone 14.
Figure S10. 1H NMR (500 MHz, CDCl$_3$) of alcohol 6.
Figure S11. 13C NMR (125 MHz, CDCl$_3$) of alcohol 6.
Figure S12. 1H NMR (500 MHz, CDCl$_3$) of aldehyde 15.
Figure S13. 13C NMR (125 MHz, CDCl$_3$) of aldehyde 15.
Figure S14. 1H NMR (500 MHz, CDCl$_3$) of diol 18.
Figure S15. 13C NMR (125 MHz, CDCl$_3$) of diol 18.
Figure S16. 1H NMR (500 MHz, CDCl$_3$) of sulfide 19.
Figure S17. 13C NMR (125 MHz, CDCl$_3$) of sulfide 19.
Figure S18. 1H NMR (500 MHz, CDCl$_3$) of TES ether 20.
Figure S19. 13C NMR (125 MHz, CDCl$_3$) of TES ether 20.
Figure S20. 1H NMR (500 MHz, CDCl$_3$) of sulfone 21.
Figure S21. 13C NMR (125 MHz, CDCl$_3$) of sulfone 21.
Figure S22. 1H NMR (500 MHz, CDCl$_3$) of crude lactone 22.
Figure S23. 1H NMR (500 MHz, CDCl$_3$) of lactone 22.
Figure S24. 13C NMR (125 MHz, CDCl$_3$) of lactone 22.
Figure S25. 1H NMR (500 MHz, CDCl$_3$) of Weinreb amide 23.
Figure S26. 13C NMR (125 MHz, CDCl$_3$) of Weinreb amide 23.
Figure S27. \(^1\)H NMR (500 MHz, CDCl\(_3\)) of TBS ether 24.
Figure S28. 13C NMR (125 MHz, CDCl$_3$) of TBS ether 24.
Figure S29. 1H NMR (500 MHz, CDCl$_3$) of alkyne 25.
Figure S30. 13C NMR (125 MHz, CDCl$_3$) of alkyne 25.
Figure S31. 1H NMR (500 MHz, CDCl$_3$) of alkynyl ester 26.
Figure S32. 13C NMR (125 MHz, CDCl$_3$) of alkynyl ester 26.
Figure S33. 1H NMR (500 MHz, CDCl$_3$) of alkynyl lactone 27.
Figure S34. 13C NMR (125 MHz, CDCl$_3$) of alkynyl lactone 27.
Figure S35. 1H NMR (500 MHz, CDCl$_3$) of cis-lactone 28.
Figure S36. 13C NMR (125 MHz, CDCl$_3$) of cis-lactone 28.
Figure S37. 1H NMR (500 MHz, CDCl$_3$) of alcohol 29.
Figure S38. 13C NMR (125 MHz, CDCl$_3$) of alcohol 29.
Figure S39. 1H NMR (500 MHz, CDCl$_3$) of carbamate 30.
Figure S40. 13C NMR (125 MHz, CDCl$_3$) of carbamate 30.
Figure S41. 1H NMR (500 MHz, CDCl$_3$) of alcohol 31.
Figure S42. 13C NMR (125 MHz, CDCl$_3$) of alcohol 31.
Figure S43. 1H NMR (500 MHz, CDCl$_3$) of vinyl iodide 32.
Figure S44. 13C NMR (125 MHz, CDCl$_3$) of vinyl iodide 32.
Figure S45. 1H NMR (500 MHz, CDCl$_3$) of TBS phenol 33.
Figure S46. 13C NMR (125 MHz, CDCl$_3$) of TBS phenol 33.
Figure S47. 1H NMR (500 MHz, CDCl$_3$) of alcohol 34.
Figure S48. 13C NMR (125 MHz, CDCl$_3$) of alcohol 34.
Figure S49. 1H NMR (500 MHz, CDCl$_3$) of ketone 35.
Figure S50. 13C NMR (125 MHz, CDCl$_3$) of ketone 35.
Figure S51. 1H NMR (500 MHz, CDCl$_3$) of alcohol (S)-34.
Figure S52. 13C NMR (125 MHz, CDCl$_3$) of alcohol (S)-34.
Figure S53. 1H NMR (500 MHz, CDCl$_3$) of TES ether (S)-8.
Figure S54. 13C NMR (125 MHz, CDCl$_3$) of TES ether (S)-8.
Figure S55. 1H NMR (500 MHz, CDCl$_3$) of enyne (S)-4.
Figure S56. 13C NMR (125 MHz, CDCl$_3$) of enyne (S)-4.
Figure S57. 1H NMR (500 MHz, DMSO-d_6) of callyspongiodlde (S)-2.
Figure S58. 13C NMR (125 MHz, DMSO-d_6) of callyspongiolide (S)-2.
Figure S59. 1H NMR (500 MHz, DMSO-d_6) of callyspongiolide (R)-2.
Figure S60. 13C NMR (125 MHz, DMSO-d_6) of callyspongiolide (R)-2.
Figure S61. 1H NMR (800 MHz, DMSO-d_6) of callyspongiolide (S)-2.
Figure S62. 1H NMR (800 MHz, DMSO-d_6) of callyspongiolide (R)-2.
Figure S63. 1H NMR overlay (800 MHz, DMSO-d_6) of callyspongiolide (S)-2 (top) and (R)-2 (bottom).
Chiral HPLC Chromatograms:

Figure S64. Racemic alcohol 34.

Figure S65. Chiral alcohol (S)-34.