Transition-Metal-Free Oxidative C5 C-H-Halogenation of 8-

Aminoquinoline Amides using Sodium Halides

Ying Wang,^a Yang Wang,^a Kai Jiang,^a Qian Zhang,^{a, b, *} Dong Li^{a, *}

^a School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China

^bHubei Key Laboratory of Drug Synthesis and Optimization, Jingchu University of Technology, Jingmen 448000, China

*Corresponding author. Tel.: +86-27-59750481; Fax: +86-27-59750482; e-mail: zhangqian620@hotmail.com; dongli@mail.hbut.edu.cn

Supplementary Information

Contents

Optimization process data in detail Experimental section Instrumentation and chemicals General procedures Characterization Data X-ray Crystal Data for 3a Copies of ¹H and ¹³C NMR spectra

S2-S3

S3 S3–S4 S4–S9 S10–S11 S12–S41

Optimization process data in detail

	O Vidant						
			" Solvent	, T °C H N			
Entry	MDr.	1a	2 ovidant	Salvant	T (%C)	Vialdb(0/)	
Entry		equivalent	oxidant	Solvent	1(0)	Y leid ^o (%)	
1	NaBr	2	oxone	CH ₃ CN	85	<5	
2	NaBr	2	oxone	DCE	85	51	
3	NaBr	2	oxone	DME	85	43	
4	NaBr	2	oxone	DMF	130	49	
5	NaBr	2	oxone	PhCl	130	38	
6	NaBr	2	oxone	THF	67	36	
7	NaBr	2	oxone	PhMe	110	23	
8	NaBr	2	oxone	1-4 dioxane	100	32	
9	NaBr	2	oxone	CH_2Cl_2	40	<5	
10	NaBr	2	$K_2S_2O_8$	DCE	85	NR	
11	NaBr	2	PhI(OAc) ₂	DCE	85	NR	
12	NaBr	2	TBHP	DCE	85	NR	
13	NaBr	2	PhIO	DCE	85	NR	
14	NaBr	2	BQ	DCE	85	NR	
14	NaBr	2	BP	DCE	85	NR	
16	NaBr	2	oxone	DCE	65	51	
17	NaBr	2	oxone	DCE	45	51	
18	NaBr	2	oxone	DCE	rt	51	
19	KBr	2	oxone	DCE	rt	43	
20	CaBr ₂	1	oxone	DCE	rt	<5	
21	NaBr	2.5	oxone	DCE	rt	54	
22	NaBr	3	oxone	DCE	rt	73	
23	NaBr	4	oxone	DCE	rt	92	

Table 1. Optimization of the reaction conditions for bromination^a

Br

^aReaction conditions: 1a (0.2 mmol), MBr_n (2), oxidant (0.3 mmol) in solvent (2.0 mL) stirring for 10 h under air. ^b Isolated yield.

Table 2. Optimization of the reaction conditions for chlorination^a

Entry	MCl _n	equivalent	oxidant	Solvent	T (°C)	Yield ^b (%)
1	NaCl	2	oxone	CH ₃ CN	85	30°
2	NaCl	2	oxone	DCE	85	30°
3	NaCl	2	oxone	DME	85	29°
4	NaCl	2	oxone	DMF	130	84° (75)
5	NaCl	2	oxone	PhCl	130	19°
6	NaCl	2	oxone	THF	67	NR
7	NaCl	2	oxone	PhMe	110	16 ^c
8	NaCl	2	oxone	1-4 dioxane	100	NR
9	NaCl	2	oxone	CH_2Cl_2	40	NR
10	NaCl	3	oxone	DMF	130	82
11	NaCl	4	oxone	DMF	130	86
12	NaCl	4	oxone	DMF	105	66
13	NaCl	4	oxone	DMF	85	37
14	KCl	4	oxone	DMF	130	75
15	$CaCl_2$	2	oxone	DMF	130	45

^aReaction conditions: **1a** (0.2 mmol), MBr_n (**2**), oxidant (0.3 mmol) in solvent (2.0 mL) stirring for 10 h under air. ^b Isolated yield. ^c GC yield.

Experimental Section

Instrumentation and chemicals

¹H NMR, ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer with CDCl₃ as the solvent and TMS as an internal standard, operating at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Melting points were measured by SGW X-4A microscopic apparatus. GC analysis was performed on Thermo Trace 1300 gas chromatograph. The X-ray crystallography was measured on Bruker D8 VENTURE PHOTON instrument. Dichloromethane, ethyl acetate and hexane were used for column chromatography without further purification. All solvents and chemicals were obtained from commercial sources and used as-received unless otherwise noted.

General procedures

General procedure for the C5 C–H-bromination. A mixture of N-(8-quinolinyl)amide (0.2 mmol), oxone (0.3 mmol) and NaBr (0.8 mmol) were added into a vial containing a stirring bar and sealed with a Teflon-lined cap. Then DCE (2 mL) was introduced. The resulting mixture was stirred at 25 °C for 10 h. After the reaction was complete, the mixture was added into H₂O (25 mL) and extracted with ethyl acetate (10 mL) for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and filtered. After removal of the solvent *in vacuo*, the residue was purified by column chromatography (ethyl acetate/hexane) to afford the pure product.

General procedure for the C5 C-H-chlorination. A mixture of N-(8-quinolinyl)amide (0.2 mmol),

oxone (0.3 mmol) and NaCl (0.8 mmol) were added into a vial containing a stirring bar and sealed with a Teflon-lined cap. Then DMF (2 mL) was introduced. The resulting mixture was stirred at 130 °C for 10 h. After the reaction was complete, the mixture was added into H_2O (15 mL) and extracted with ethyl acetate (10 mL) for three times. The combined organic layer was dried over anhydrous MgSO₄ and filtered. After removal of the solvent *in* vacuo, the residue was purified by silica gel column (hexane/EtOAc) to afford the pure product.

Synthesis of substrates 1

The aminoquinoline (2.0 mmol) and triethylamine (2.2 mmol) were dissolved in dry CH_2Cl_2 (5 mL) and stirred at room temperature for 10 min, then stirred for a further 10 min while the reaction solution was cooled in an ice bath. The acid chloride (2.0 mmol) was added dropwise. The reaction solution was left in the cooling bath for 1 hour and then allowed to warm to room temperature. Stirring was continued at room temperature for 2 h. The reaction mixture was dissolved in CH_2Cl_2 (20 mL) and 1M NaOH aqueous solution (3×15 mL). The organic layer was dried with anhydrous MgSO4, filtered. After removal of the solvent in vacuo, the residue was purified by silica gel column with hexane/EtOAc to afford the pure product.

Synthesis of 8a

A mixture of N-(5-bromoquinolin-8-yl)propanamide (0.2 mmol), $Pd(OAc)_2$ (5 mol%), Xphos (10 mol%), 4-methoxyphenylboronic acid (0.3 mmol) and K_2CO_3 (0.4 mmol) were added into a vial containing a stirring bar and sealed with a Teflon-lined cap. Then EtOH (2 mL) was introduced. The resulting mixture was stirred at 80 °C for 6 h. After the reaction was complete, the mixture was added into H_2O (15 mL) and extracted with ethyl acetate (10 mL) for three times. The combined organic layer was dried over anhydrous MgSO₄ and filtered. After removal of the solvent *in* vacuo, the residue was purified by silica gel column (hexane/EtOAc) to afford the pure product.

Synthesis of 8b

A mixture of N-(5-bromoquinolin-8-yl)propanamide (0.2 mmol), $Pd(OAc)_2$ (5 mol%), Xphos (10 mol%), B_2pin_2 (0.4 mmol) and KOAc (0.4 mmol) were added into a vial containing a stirring bar and sealed with a Teflon-lined cap. Then 1,4-dioxane (2 mL) was introduced. The resulting mixture was stirred at 110 °C for 5 h. After the reaction was complete, the mixture was added into H_2O (15 mL) and extracted with ethyl acetate (10 mL) for three times. The combined organic layer was dried over anhydrous MgSO₄ and filtered. After removal of the solvent *in* vacuo, the residue was purified by silica gel column (hexane/EtOAc) to afford the pure product.

Characterization Data

N-(5-bromoquinolin-8-yl)propanamide(3a)

Yellow solid, mp 103–105 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.34 (t, *J* = 7.56 Hz, 3H), 2.60 (q, *J* = 7.56 Hz, 2H), 7.56 (q, *J* = 4.20 Hz, 1H), 7.78 (d, *J* = 8.40 Hz, 1H), 8.50–8.53 (m, 1H), 8.68 (d, *J* = 8.40 Hz, 1H), 8.80–

8.82 (m, 1H), 9.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 9.7, 31.3, 114.0, 116.9, 122.6, 127.2, 131.0, 134.5, 136.0, 139.1, 148.6, 172.5.

N-(5-bromoquinolin-8-yl)acetamide(**3b**)

Light yellow solid, mp 139–141 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 7.53–7.57 (m, 1H), 7.77 (d, *J* = 8.36 Hz, 1H), 8.51 (d, *J* = 8.52 Hz, 1H), 8.65 (d, *J* = 8.40 Hz, 1H), 8.80 (d, *J* = 4.08 Hz, 1H), 9.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 25.1, 114.1, 116.9, 122.6, 127.2, 130.9, 134.5, 136.0, 138.9, 148.6, 168.7.

N-(5-bromoquinolin-8-yl)butyrylamide(3c)

Light yellow solid, mp 79–81 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.06 (t, *J* = 7.36 Hz, 3H), 1.85 (q, *J* = 7.44 Hz, 2H), 2.54 (t, *J* = 7.40 Hz, 2H), 7.54–7.58 (m, 1H), 7.78 (d, *J* = 8.36 Hz, 1H), 8.52 (d, *J* = 8.52 Hz, 1H), 8.69 (d, *J* = 8.40 Hz, 1H), 8.80–8.82 (m, 1H), 9.78 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 19.1, 40.2, 114.0, 116.9, 122.6, 127.2, 131.0, 134.5, 136.0, 139.0, 148.6, 171.8.

N-(5-bromoquinolin-8-yl)-3-phenylpropanamide(3d)

Light yellow solid, mp 107–108 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.87 (t, *J* = 8.12 Hz, 2H), 3.14 (t, *J* = 7.52 Hz, 2H), 7.19 (q, *J* = 44.08 Hz, 1H), 7.28–7.30 (m, 4H), 7.52 (q, *J* = 4.20 Hz, 1H), 7.77 (d, *J* = 8.40 Hz, 1H), 8.50 (d, *J* = 8.52 Hz, 1H), 8.67 (d, *J* = 8.40 Hz, 1H), 8.76 (d, *J* = 4.12 Hz, 1H), 9.74 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 31.4, 39.7, 114.1, 117.0, 122.6, 126.3, 127.2, 128.4, 128.6, 130.9, 134.4, 136.0, 139.0, 140.6, 148.6, 170.8.

N-(5-bromoquinolin-8-yl)isobutyramide(3e)

Light yellow solid, mp 77–78 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.34–1.37 (m, 6H), 2.72–2.80 (m, 1H), 7.54– 7.58 (m, 1H), 7.79 (d, *J* = 8.04 Hz, 1H), 8.51 (d, *J* = 8.44 Hz, 1H), 8.69 (d, *J* = 8.40 Hz, 1H), 8.81–8.83 (m, 1H), 9.88 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 19.7, 37.2, 114.0, 116.9, 122.6, 127.2, 131.0, 134.6, 136.0, 139.2, 148.6, 175.8.

N-(5-bromoquinolin-8-yl)-t-butyl carboxamide(3f)

Yellow solid, mp 90–92 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.42 (s, 9H), 7.53–7.57 (m, 1H), 7.78 (d, *J* = 8.40 Hz, 1H), 8.51 (d, *J* = 8.52 Hz, 1H), 8.69 (d, *J* = 8.40 Hz, 1H), 8.82–8.84 (m, 1H), 10.23 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.7, 40.4, 113.9, 116.8, 122.6, 127.2, 131.0, 134.7, 135.9, 139.5, 148.7, 177.3.

N-(5-bromoquinolin-8-yl)cyclohexane carboxamide(3g)

Light yellow solid, mp 92–93 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.25–1.44 (m, 4H), 1.58–1.65 (m, 2H), 1.86– 1.90 (m, 2H), 2.06–2.10 (m, 2H), 2.43–2.51 (m, 1H), 7.54–7.58 (m, 1H), 7.77–7.80 (m, 1H), 8.52 (d, *J* = 8.48 Hz, 1H), 8.69 (d, *J* = 8.40 Hz, 1H), 8.82 (d, *J* = 4.12 Hz, 1H), 9.86 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 25.7, 29.7, 46.9, 113.9, 116.9, 122.6, 127.2, 131.0, 134.6, 136.0, 139.2, 148.6, 174.9.

N-(5-bromoquinolin-8-yl)benzamide(3h)

White solid, mp 120–122 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.54–7.59 (m, 4H), 7.83 (d, *J* = 8.36 Hz, 1H), 8.06 (d, *J* = 7.32 Hz, 2H), 8.53 (d, *J* = 8.48 Hz, 1H), 8.81–8.86 (m, 2H), 10.70 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 114.4, 117.0, 121.6, 122.7, 127.3, 128.8, 131.0, 132.0, 134.5, 134.9, 136.0, 139.5, 148.7, 165.4.

4-methyl-N-(5-bromoquinolin-8-yl)benzamide(3i)

Yellow solid, mp 156–158 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.45 (s, 3H), 7.35 (d, *J* = 7.64 Hz, 2H), 7.56– 7.61 (m, 1H), 7.84 (dd, *J* = 8.32 Hz, *J* = 2.88 Hz, 1H), 7.96 (d, *J* = 7.84 Hz, 2H), 8.53–8.57 (m, 1H), 8.81–8.87 (m, 2H), 10.68 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.5, 114.2, 117.0, 122.7, 127.3, 129.5, 131.0, 132.1, 134.7, 136.0, 139.5, 142.6, 148.7, 165.4.

4-fluoro-N-(5-bromoquinolin-8-yl)benzamide(3j)

White solid, mp 169–171 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.20–7.26 (m, 2H), 7.60 (q, *J* = 41.60 Hz, 1H), 7.85 (d, *J* = 8.40 Hz, 1H), 8.08 (q, *J* = 5.40 Hz, 2H), 8.55 (d, *J* = 8.44 Hz, 1H), 8.83 (dd, *J* = 24.20 Hz, *J* = 3.92 Hz, 2H), 10.65 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 114.6, 115.9 (d, *J* = 21.84 Hz), 117.0, 122.8, 127.3, 129.7 (d, *J* = 9.00 Hz), 131.0, 131.1 (d, *J* = 3.04 Hz), 134.4, 136.1, 139.4, 148.9, 164.3, 165.1 (d, *J* = 251.30 Hz).

4-chloro-N-(5-bromoquinolin-8-yl)benzamide(3k)

White solid, mp 145–146 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.36 Hz, 2H), 7.59 (q, *J* = 4.20 Hz, 1H), 7.84 (d, *J* = 8.40 Hz, 1H), 8.00 (d, *J* = 8.36 Hz, 2H), 8.55 (d, *J* = 8.52 Hz, 1H), 8.79 (d, *J* = 8.40 Hz, 1H), 8.86 (d, *J* = 4.20 Hz, 1H), 10.66 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 114.7, 117.1, 122.8, 127.3, 128.7, 129.1, 131.0, 133.3, 134.3, 136.1, 138.4, 139.4, 148.8, 164.3.

4-trifluoromethyl-N-(5-bromoquinolin-8-yl)benzamide(3l)

Yellow solid, mp 135–137 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (dd, *J* = 8.44 Hz, *J* = 4.20 Hz, 1H), 7.84 (dd, *J* = 16.48 Hz, *J* = 8.36 Hz, 3H), 8.17 (d, *J* = 8.00 Hz, 2H), 8.57 (d, *J* = 8.52 Hz, 1H), 8.81 (d, *J* = 8.36 Hz, 1H), 8.87 (d, *J* = 4.08 Hz, 1H), 10.74 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 115.0, 117.2, 122.3, 122.9, 125.9 (q, *J* = 3.73 Hz), 127.3, 127.8, 131.0, 133.7 (q, *J* = 32.52 Hz), 134.1, 136.2, 138.1, 139.4, 148.9, 164.0.

N-(5-bromo-2-methylquinolin-8-yl)propanamide(3m)

Light yellow solid, mp 118–119 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.34 (t, *J* = 7.52 Hz, 3H), 2.60 (q, *J* = 7.52 Hz, 2H), 2.76 (s, 3H), 7.38–7.41 (m, 1H), 7.67–7.71 (m, 1H), 8.36 (d, *J* = 8.60Hz, 1H), 8.63 (d, *J* = 8.36Hz, 1H), 9.83 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 9.6, 25.0, 31.3, 113.9, 116.9, 123.4, 125.4, 129.9, 133.9, 136.0, 138.5, 157.9, 172.4.

N-(5-bromo-2-methylquinolin-8-yl)acetamide(3n)

Light yellow solid, mp 127–129 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.34 (s, 3H), 2.77 (s, 3H), 7.37–7.42 (m, 1H), 7.67–7.71 (m, 1H), 8.36 (t, *J* = 7.80 Hz, 1H), 8.59–8.63 (m, 1H), 9.78 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 25.0, 25.1, 114.1, 116.9, 123.5, 125.4, 129.8, 133.8, 136.0, 138.4, 157.9, 168.6.

N-(5-chloroquinolin-8-yl)propanamide(**5a**)

Yellow solid, mp 68–71 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.33 (t, *J* = 7.56 Hz, 3H), 2.60 (q, *J* = 7.56 Hz, 2H), 7.54–7.61(m, 2H), 8.56 (d, *J* = 8.48 Hz, 1H), 8.73 (d, *J* = 8.44 Hz, 1H), 8.83–8.85 (m, 1H), 9.77 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 9.7, 31.2, 116.3, 122.3, 124.1, 125.9, 127.3, 133.4, 133.9, 138.9, 148.6, 172.5.

N-(5-chloroquinolin-8-yl)acetamide(**5b**)

Yellow solid, mp 135–136 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 7.53–7.59 (m, 2H), 8.55 (d, J = 8.52 Hz, 1H), 8.69 (d, J = 8.40 Hz, 1H), 8.82 (d, J = 3.96 Hz, 1H), 9.72 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 25.1, 116.4, 122.3, 124.2, 125.9, 127.3, 133.4, 133.8, 138.8, 148.6, 168.7.

N-(5-chloroquinolin-8-yl)butyrylamide(5c)

Light yellow solid, mp 46–48 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.06 (t, *J* = 7.40 Hz, 3H), 1.85 (q, *J* = 7.40 Hz, 2H), 2.54 (t, *J* = 7.44 Hz, 2H), 7.55–7.61 (m, 2H), 8.56 (d, *J* = 8.52 Hz, 1H), 8.73 (d, *J* = 8.40 Hz, 1H), 8.83–8.85 (m, 1H), 9.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 13.8, 19.1, 40.1, 116.3, 122.3, 124.1, 125.9, 127.3, 133.4, 133.8, 138.9, 148.6, 171.8.

N-(5-chloroquinolin-8-yl)-3-phenylpropanamide(5d)

Yellow solid, mp 109–110 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.88 (t, *J* = 8.16 Hz, 2H), 3.14 (t, *J* = 7.52 Hz, 2H), 7.21 (q, *J* = 4.16 Hz, 1H), 7.28–7.30 (m, 4H), 7.52–7.60 (m, 2H), 8.54 (d, *J* = 8.48 Hz, 1H), 8.72 (d, *J* = 8.20 Hz, 1H), 8.79 (d, *J* = 4.04 Hz, 1H), 9.72 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 31.4, 39.7, 116.4, 122.3, 124.2, 125.9, 126.3, 127.2, 128.4, 128.6, 133.4, 133.7, 138.8, 140.7, 148.6, 170.7.

N-(5-chloroquinolin-8-yl)isobutyramide(5e)

Light yellow solid, mp 70–72 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.35 (d, *J* = 6.88 Hz, 6H), 2.72–2.80 (m, 1H), 7.55–7.61 (m, 2H), 8.56 (d, *J* = 8.48 Hz, 1H), 8.74 (d, *J* = 8.40 Hz, 1H), 8.85 (d, *J* = 4.08 Hz, 1H), 9.85 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 19.7, 37.1, 116.3, 122.3, 124.1, 126.0, 127.3, 133.4, 133.9, 139.1, 148.6, 175.7.

N-(5-chloroquinolin-8-yl)-t-butyl carboxamide(5f)

Light yellow solid, mp 80–82 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.42 (s, 9H), 7.54–7.60 (m, 2H), 8.55 (d, *J* = 8.48 Hz, 1H), 8.74 (d, *J* = 8.40 Hz, 1H), 8.85 (d, *J* = 4.08 Hz, 1H), 10.21 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.7, 40.4, 116.2, 122.2, 124.0, 125.9, 127.3, 133.4, 134.1, 139.4, 148.7, 177.3.

N-(5-chloroquinolin-8-yl)cyclopropane carboxamide(5g)

Yellow solid, mp 69–72 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.90–0.96 (m, 2H), 1.14–1.18 (m, 2H), 1.76–1.83 (m, 1H), 7.55–7.59 (m, 2H), 8.56 (d, *J* = 8.52 Hz, 1H), 8.68 (d, *J* = 8.40 Hz, 1H), 8.84–8.86 (m, 1H), 9.97 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 8.3, 16.3, 116.3, 122.3, 123.9, 125.9, 127.3, 133.4, 134.0, 138.8, 148.5, 172.3.

N-(5-chloroquinolin-8-yl)benzamide(**5h**)

Yellow solid, mp 128–130 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.54–7.66 (m, 5H), 8.07 (d, *J* = 7.32 Hz, 2H), 8.58 (d, *J* = 8.48 Hz, 1H), 8.87–8.90 (m, 2H), 10.68 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 116.5, 122.4, 124.5, 126.0, 127.2, 127.3, 128.9, 132.0, 133.5, 133.9, 134.9, 139.3, 148.8, 165.4.

4-methyl-N-(5-chloroquinolin-8-yl)benzamide(5i)

Yellow solid, mp 120–122 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.45 (s, 3H), 7.34 (d, *J* = 7.84 Hz, 2H), 7.58 (q, *J* = 4.20 Hz, 1H), 7.64 (d, *J* = 8.40 Hz, 1H), 7.96 (d, *J* = 7.92 Hz, 2H), 8.57 (d, *J* = 8.48 Hz, 1H), 8.86–8.89 (m, 2H), 10.65 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.6, 116.4, 122.4, 124.3, 126.0, 127.3, 127.4, 129.5, 132.1, 133.4, 134.0, 139.3, 142.6, 148.7, 165.4.

4-fluoro-N-(5-chloroquinolin-8-yl)benzamide(5j)

White solid, mp 149–151 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.20–7.26 (m, 2H), 7.58–7.66 (m, 2H), 8.08 (dd, *J* = 8.08 Hz, *J* = 5.48 Hz, 2H), 8.59 (d, *J* = 8.88 Hz, 1H), 8.85 (d, *J* = 8.36 Hz, 1H), 8.89 (d, *J* = 4.12 Hz, 1H), 10.63 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 115.9 (d, *J* = 21.85 Hz), 116.5, 122.5, 124.6, 126.0, 127.3, 129.7 (d, *J* = 8.98 Hz), 131.1 (d, *J* = 3.14 Hz), 133.5, 133.7, 139.3, 148.8, 164.3, 165.1 (d, *J* = 251.34 Hz).

4-chloro-N-(5-chloroquinolin-8-yl)benzamide(5k)

Yellow solid, mp 129–132 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.68 (m, 2H), 7.80–7.83 (m, 2H), 8.17 (d, *J* = 8.28 Hz, 2H), 8.60 (d, *J* = 8.48 Hz, 1H), 8.84–8.91 (m, 2H), 10.72 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 116.5, 122.5, 124.8, 126.0, 127.3, 128.7, 129.1, 133.2, 133.5, 133.6, 138.3, 139.3, 148.8, 164.3.

4-trifluoromethyl-N-(5-chloroquinolin-8-yl)benzamide(5l)

White solid, mp 142–145 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.68 (m, 2H), 7.80–7.83 (m, 2H), 7.16–7.19 (m, 2H), 7.60 (d, *J* = 8.48 Hz, 1H), 8.84–8.91 (m, 2H), 10.72 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 116.7, 122.6, 125.1, 125.9 (q, *J* = 3.62 Hz), 126.0, 127.3, 127.7, 133.4, 133.5, 133.6, 133.8, 138.1, 139.2, 148.9, 164.0.

N-(5-chloro-2-methylquinolin-8-yl)propanamide(5m)

Yellow solid, mp 88–90 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.34 (t, *J* = 7.56 Hz, 3H), 2.60 (q, *J* = 7.56 Hz, 2H), 2.76 (s, 3H), 7.39–7.42 (m, 1H), 7.49–7.52 (m, 1H), 8.39–8.42 (m, 1H), 8.68 (d, *J* = 8.40 Hz, 1H), 9.81 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 9.7, 25.1, 31.2, 116.3, 123.1, 124.0, 124.1, 126.2, 133.2, 133.4, 138.3, 157.8, 172.4.

N-(5-chloro-2-methylquinolin-8-yl)acetamide(5n)

Yellow solid, mp 134–135 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 2.76 (s, 3H), 7.39–7.42 (m, 1H), 7.48–7.51 (m, 1H), 8.40 (d, *J* = 8.60 Hz, 1H), 8.65 (d, *J* = 8.40 Hz, 1H), 9.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 25.1, 25.2, 116.3, 123.2, 124.1, 124.2, 126.2, 133.1, 133.4, 138.2, 157.9, 168.7.

N-[5-(4-methoxy-phenyle)quinolin-8-yl]propanamide(8a)

White solid, mp 175–176 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.36 (t, *J* = 7.52 Hz, 3H), 2.62 (q, *J* = 7.56 Hz, 2H), 3.89 (s, 3H), 7.01–7.04 (m, 2H), 7.35–7.42 (m, 3H), 7.48 (d, *J* = 7.96 Hz, 1H), 8.29 (d, *J* = 8.52 Hz, 1H), 8.80–8.83 (m, 2H), 9.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 9.8, 31.3, 55.4, 114.0, 116.1, 121.4, 126.5, 127.8, 131.2, 131.6, 133.7, 133.9, 134.9, 138.5, 147.8, 159.1, 172.6.

N-(5-borane-quinolin-8-yl]propanamide(**8b**)

Yellow solid, mp 165–167 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.16–1.18 (m, 2H), 1.33 (s, 12H), 2.52–2.56 (m, 3H), 7.43–7.47 (m, 2H), 8.08 (t, *J* = 7.64 Hz, 2H), 9.10 (d, *J* = 8.40 Hz, 1H), 10.00 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 9.7, 25.0, 31.3, 83.8, 116.5, 121.4, 121.6, 121.8, 127.5, 128.0, 134.5, 137.8, 148.1, 172.6.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 3a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 3a

Bond precision:	C-C = 0.0046 A	Wavelength=1.54056	
Cell:	a=8.473(2)	b=19.517(4) c=7.043(2)	
	alpha=90	beta=102.04(3) gamma=90	
Temperature:	293 K		
	Calculated	Reported	
Volume	1139.1(5)	1139.2(5)	
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C12 H11 Br N2 O	C12 H11 Br N2 O	
Sum formula	C12 H11 Br N2 O	C12 H11 Br N2 O	
Mr	279.13	279.14	
Dx,g cm-3	1.628	1.628	
Z	4	4	
Mu (mm-1)	4.599	4.753	
F000	560.0	560.0	
F000'	558.54		
h,k,lmax	10,24,8	10,23,7	
Nref	2253	2160	
Tmin, Tmax	0.310,0.369	0.511,0.754	
Tmin'	0.165		
Correction metho AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.511 Tmax=0.754	
Data completenes	ss= 0.959	Theta(max) = 72.061	
R(reflections)=	0.0432(1708)	wR2(reflections) = 0.1026(216	0)
S = 1.054	Npar=	147	

PLATON version of 06/05/2016; check.def file version of 05/05/2016

Copies of ¹H and ¹³C NMR spectra

- S20 -

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

- S27 -

- S30 -

- S31 -

