Supporting Information for:

Remarkable acceleration of template-directed photodimerisation of

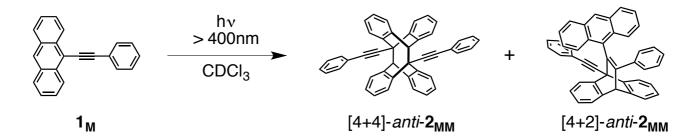
9-phenylethynylanthracene derivatives assisted by

complementary salt bridge formation

Junki Tanabe, Daisuke Taura, Naoki Ousaka and Eiji Yashima*

Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

E-mail: yashima@apchem.nagoya-u.ac.jp (E.Y.)

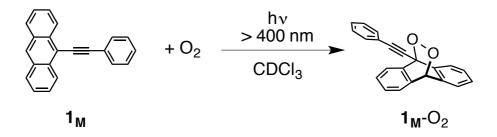

1. Materials and Instruments

Materials. All starting materials and dehydrated solvents were purchased from Aldrich (Milwaukee, WI), Wako Pure Chemical Industries (Osaka, Japan), and Tokyo Chemical Industry (Tokyo, Japan) unless otherwise noted. Silica gel (SiO₂) and aminopropyl-modified silica gel (NH-SiO₂) for the flash chromatography were purchased from Merck and Fuji Silysia Chemical Ltd. (Kusanagi, Japan), respectively. Compounds 1_{M} , ^{S1} C-H, ^{S2} C-2H, ^{S2} T_{AA}, ^{S2} and A^{S3} were prepared according to the previously reported methods.

Instruments. The melting points were measured using a Yanaco MP-500D melting point apparatus (Kyoto, Japan) and were uncorrected. The NMR spectra were measured on a Varian UNITY INOVA 500AS spectrometer operating at 500 MHz for ¹H and 125 MHz for ¹³C using a Teflon-valved NMR tube (5-mm (i.d.)) (Norell Inc.). Chemical shifts are reported in parts per million (δ) downfield from tetramethylsilane (TMS) in CDCl₃ or in benzene-d₆ using a solvent residual peak as the internal standard. The recycling preparative HPLC was performed with an LC-928R liquid chromatograph (Japan Analytical Industry, Tokyo, Japan) equipped with two SEC columns (JAIGEL-1H (1 x 60 cm) and JAIGEL-2H (1 x 60 cm)) in series and a UV-visible detector (254 nm, JAI UV-310), and CHCl₃ was used as the eluent. The ESI-MS spectra were recorded on a Japan). JEOL JMS-T100CS spectrometer (Akishima, The matrix-assisted laser desorption/ionisation time-of-flight mass (MALDI-TOF-MS) spectra were taken on a Shimadzu AXIMA-CFR plus spectrometer (Kyoto, Japan) equipped with a 337 nm N₂ laser using 1,8,9-anthracene triol (dithranol) as the matrix. The elemental analyses were performed by the laboratory of elemental analyses in the Department of Agriculture, Nagoya University. The IR spectra were recorded using a JASCO Fourier Transform IR-680 spectrophotometer (Hachioji, Japan). The absorption and CD spectra were measured in a 0.1-, 1-, or 10-mm quartz cell on a JASCO V-570 spectrophotometer and a JASCO J-820 spectropolarimeter, respectively. The fluorescence spectra were measured in a 10-mm quartz cell on a JASCO FP-6500 spectrofluorometer. The size-exclusion chromatography (SEC) measurements were carried out using a JASCO PU-2080 liquid chromatograph equipped with a UV–Visible (254 nm; JASCO UV-2070) detector. Two Tosoh TSKgel Multipore HXL-M (30 cm) SEC columns (Tosoh, Tokyo, Japan) were connected in series using THF containing tetrabutylammonium bromide (TBAB) (0.1 wt %) as the eluent at a flow rate of 1.0 mL min⁻¹. The single-crystal X-ray data were collected on a Rigaku Saturn 724+ CCD diffractometer with Mo K*a* radiation ($\lambda = 0.71075$ Å) at 103 K. The photoirradiation ($\lambda > 400$ nm) was performed using a 500 W xenon lamp (Ushio Optical Modulex SX-UI500XQ) through a cut-off filter (SIGMAKOKI Co., Ltd.).

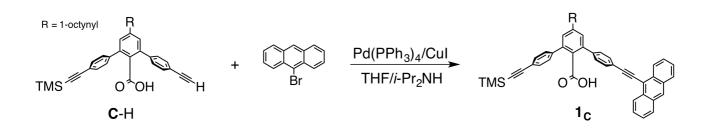
2. Synthetic Procedures

Scheme S1. Synthesis of photodimers ([4+4]-anti-2_{MM} and [4+2]-anti-2_{MM})

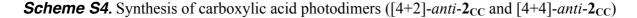

A solution of $\mathbf{1}_{M}$ (55.9 mg, 0.201 mmol) in CDCl₃ (25 mL) was irradiated with light (> 400 nm) at ambient temperature for 5 h using a cut-off filter. After evaporating the solvent, the residue was recrystallised from CH₂Cl₂ in the presence of methanol to give a mixture of [4+4]-*anti*- $\mathbf{2}_{MM}$ and [4+2]-*anti*- $\mathbf{2}_{MM}$ (30.0 mg), which were further separated by column chromatography (SiO₂, *n*-hexane/CHCl₃ = 1/0 to 5/1 (v/v)) into pure [4+4]-*anti*- $\mathbf{2}_{MM}$ (2.5 mg, 4.5% yield) as a white solid and [4+2]-*anti*- $\mathbf{2}_{MM}$ (20.4 mg, 36.5% yield) as a yellow solid, respectively. The structures were determined by single-crystal X-ray analyses (see *Figs. S3* and *S4*, respectively).

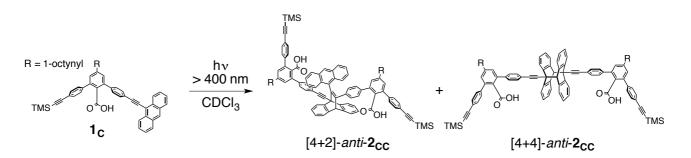
[4+4]-*anti*-2_{MM}. Mp: 155–157 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.73 (dd, J = 7.9, 1.7 Hz, 4H, ArH), 7.66 (dd, J = 7.5, 1.5 Hz, 4H, ArH), 7.47–7.43 (m, 6H, ArH), 7.03 (dd, J = 7.5, 1.5 Hz, 4H, ArH), 6.96 (ddd, J = 7.5, 7.5, 1.5 Hz, 4H, ArH), 6.90 (ddd, J = 7.5, 7.5, 1.5 Hz, 4H, ArH), 4.91 (s, 2H, CH). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 142.59, 140.39, 131.91, 128.55, 128.46, 127.95, 126.33, 126.21, 126.06, 123.45, 92.37, 89.14, 64.90, 54.31. IR (KBr, cm⁻¹): 3065 (v_{ArC-H}), 3018

 (v_{ArC-H}) , 1489 (v_{ArC-C}) , 1472 (v_{ArC-C}) , 1453 (v_{ArC-C}) . MALDI-TOF-MS: $[M(C_{44}H_{28})+Na]^+$ (calcd. 579.2): found. 579.0. Anal. Calcd for $C_{44}H_{28}$: C, 94.93; H, 5.07. Found: C, 94.77; H, 5.02.


[4+2]*-anti*-2_{MM}. Mp: 310 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 8.34 (s, 1H, ArH), 7.92 (d, J = 8.5 Hz, 2H, ArH), 7.72 (dd, J = 7.0, 1.0 Hz, 2H, ArH), 7.59 (dd, J = 7.0, 1.0 Hz, 2H, ArH), 7.32–7.29 (m, 2H, ArH), 7.21 (ddd, J = 7.5, 7.0, 1.0 Hz, 2H, ArH), 7.12–6.98 (m, 9H, ArH), 6.90–6.89 (m, 3H, ArH), 6.47 (dd, J = 8.0, 1.0 Hz, 2H, ArH), 5.73 (s, 1H, CH). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 148.80, 145.41, 144.77, 144.44, 138.07, 133.00, 131.40, 131.35, 130.63, 128.32, 127.92, 127.80, 127.78, 127.03, 126.89, 126.48, 126.33, 125.57, 125.23, 125.18, 124.98, 122.99, 122.83, 122.64, 91.16, 84.71, 58.41, 56.50. IR (KBr, cm⁻¹): 3053 (v_{ArC-H}), 1492 (v_{ArC-C}), 1456 (v_{ArC-C}), 1442 (v_{ArC-C}), 1359 (v_{ArC-C}). UV-vis (CDCl₃): λ_{max} (ε [M⁻¹ cm⁻¹]) = 395 (8,900), 374 (9,250), 355 (5,630) nm. MALDI-TOF-MS: [M(C₄₄H₂₈)+Na]⁺ (calcd. 579.2): found. 578.9. Anal. Calcd for C₄₄H₂₈: C, 94.93; H, 5.07. Found: C, 94.79; H, 4.97.

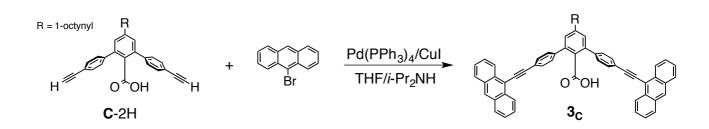
Scheme S2. Synthesis of endoperoxide (1_M-O_2)



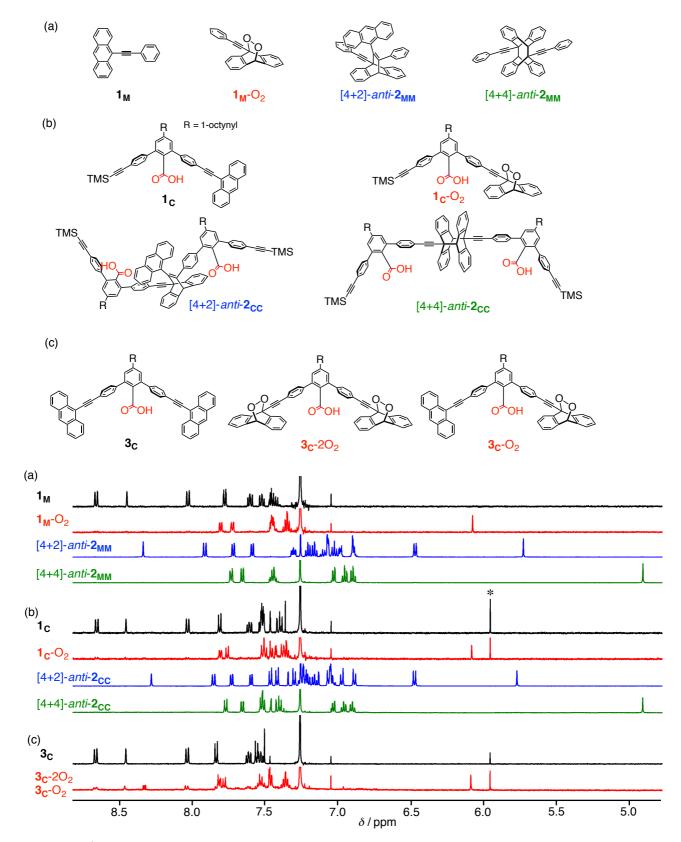

A solution of 1_{M} (9.1 mg, 0.033 mmol) in CDCl₃ (10 mL) was saturated with oxygen by bubbling the gas using a stainless steel needle for 30 min. The solution was then irradiated with light over 400 nm at ambient temperature for 15 min using a cut-off filter. The solvent was removed under reduced pressure to give a mixture of 1_{M} (10%) and 1_{M} -O₂ (90%) (9.0 mg) as a yellow solid. The spectroscopic data of 1_{M} -O₂ were immediately taken without further purification because 1_{M} -O₂ was not stable and thermally decomposed back to the monomer 1_{M} (see *Fig. S7*). Mp: 93–95 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.81 (d, *J* = 5.0 Hz, 2H, ArH), 7.73 (d, *J* = 5.0 Hz, 2H, ArH), 7.47–7.44 (m, 5H, ArH), 7.38–7.34 (m, 4H, ArH), 6.08 (s, 1H, CH). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 138.52, 137.44, 132.53, 129.87, 128.73, 128.47, 128.14, 123.55, 122.92, 121.47, 94.93, 80.06, 79.42, 78.42. IR (KBr, cm⁻¹): 3060 (v_{ArC-H}), 2234 (v_{C=C}), 1490 (v_{ArC-C}), 800 (v_{O-O}). HRMS (ESI): m/z calcd for [M(C₂₂H₁₄O₂)–H]⁻, 309.0916; found 309.0926.

Scheme S3. Synthesis of carboxylic acid monomer (1_C)

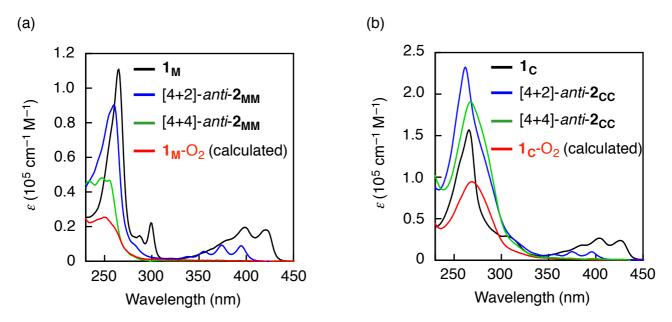
Copper (I) iodide (3.79 mg, 19.9 µmol) was added to a solution of C-H (200 mg, 0.398 mmol), 9-bromoanthracene (511 mg, 1.99 mmol), and tetrakis(triphenylphosphine)palladium(0) (23.0 mg, 19.9 μ mol) in a THF-diisopropylamine mixture (1/1 (v/v), 15 mL) and the mixture was stirred at 65 °C for 17 h. After evaporating the solvents, the residue was purified by column chromatography $(SiO_2, n-hexane/EtOAc = 1/0 \text{ to } 3/1 \text{ (v/v)})$ to give pure 1_C (77.4 mg, 57.3% yield) as a yellow solid. Mp: 98–100 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 8.65 (d, J = 8.5 Hz, 2H, ArH), 8.42 (s, 1H, ArH), 8.01 (d, J = 8.5 Hz, 2H, ArH), 7.82 (d, J = 8.5 Hz, 2H, ArH), 7.59–7.56 (m, 2H, ArH), 7.54–7.49 (m, 6H, ArH), 7.45 (d, J = 1.5 Hz, 1H, ArH), 7.41 (d, J = 1.5 Hz, 1H, ArH), 7.37 (d, J = 1.5 Hz, 1H, ArH), 7.45 (d, J = 1.5 8.5 Hz, 2H, ArH), 2.43 (t, J = 7.0 Hz, 2H, C=CCH₂), 1.64–1.59 (m, 2H, CH₂), 1.48–1.44 (m, 2H, CH₂), 1.34–1.31 (m, 4H, CH₂), 0.90 (t, J = 7.0 Hz, 3H, CH₃), 0.25 (s, 9H, TMS). ¹³C NMR (125) MHz, CDCl₃, 25 °C): δ 172.40, 140.28, 140.16, 139.93, 139.88, 132.77, 132.13, 132.08, 132.00, 131.84, 131.28, 130.52, 128.80, 128.77, 128.51, 127.93, 126.92, 126.80, 126.14, 125.81, 123.48, 122.98, 117.24, 104.88, 100.48, 95.56, 93.30, 87.50, 79.62, 31.49, 28.77, 28.70, 22.69, 19.61, 14.22, 0.15. IR (KBr, cm⁻¹): 2157 ($v_{C=C}$), 1701 ($v_{C=O}$). UV-vis (CDCl₃): λ_{max} (ε [M⁻¹cm⁻¹]) = 426 (23,700), 404 (26,500), 385 (18,200) nm. HRMS (ESI): m/z calcd for [M(C₄₈H₄₂O₂Si)-H]⁻, 677.2876; found 677.2889.


A solution of $\mathbf{1}_{C}$ (16 mg, 0.024 mmol) in CDCl₃ (0.80 mL) was degassed five times by means of freeze-pump out-thaw (nitrogen) cycles, and then irradiated with light (> 400 nm) at 25 °C for

150 min under nitrogen using a cut-off filter. After evaporating the solvent, the residue was purified by column chromatography (SiO₂, *n*-hexane/EtOAc = 1/0 to 10/1 (v/v)) to afford [4+4]-*anti*-2_{CC} (3.4 mg, 21% yield) and [4+2]-*anti*-2_{CC} (9.7 mg, 61% yield), respectively, as yellow solids.


[4+4]*-anti-2*_{CC}. Mp: 98–100 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.77 (d, J = 8.5 Hz, 4H, ArH), 7.66 (d, J = 7.5 Hz, 4H, ArH), 7.54–7.50 (m, 10H, ArH), 7.46 (d, J = 1.4 Hz, 2H, ArH), 7.42 (d, J = 1.4 Hz, 2H, ArH), 7.39 (d, J = 8.0 Hz, 4H, ArH), 7.03 (d, J = 7.5 Hz, 4H, ArH), 6.97–6.94 (m, 4H, ArH), 6.90–6.88 (m, 4H, ArH), 4.91 (s, 2H, CH), 2.44 (t, J = 7.0 Hz, 4H, C=CCH₂), 1.64–1.60 (m, 4H, CH₂), 1.49–1.43 (m, 4H, CH₂), 1.34–1.32 (m, 8H, CH₂), 0.91 (t, J = 7.0 Hz, 6H, CH₃), 0.26 (s, 18H, TMS). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 170.26, 142.59, 140.43, 140.34, 140.32, 139.95, 139.92, 132.19, 132.07, 130.23, 128.80, 128.53, 128.10, 126.50, 126.37, 126.22, 126.15, 123.23, 123.02, 117.24, 104.82, 95.48, 93.47, 93.40, 88.91, 79.62, 65.00, 54.43, 31.50, 28.79, 28.71, 22.70, 19.64, 14.22, 0.14. IR (KBr, cm⁻¹): 2157 (v_{C=C}), 1702 (v_{C=O}). HRMS (ESI): m/z calcd for [M(C₉₆H₈₄O₄Si₂)–H]⁻, 1355.5830; found 1355.5815.

[4+2]-anti-2_{CC}. Mp: 159–161 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 8.31 (s, 1H, ArH), 7.89 (d, J = 8.5 Hz, 2H, ArH), 7.73 (d, J = 7.0 Hz, 2H, ArH), 7.60 (d, J = 7.0 Hz, 2H, ArH), 7.45 (d, J = 8.0 Hz, 2H, ArH), 7.42 (d, J = 8.0 Hz, 2H, ArH), 7.32–7.26 (m, 5H, ArH), 7.25–7.20 (m, 6H, ArH), 7.19–7.15 (m, 2H, ArH), 7.13 (d, J = 1.5 Hz, 1H, ArH), 7.10–7.00 (m, 6H, ArH), 6.97 (d, J = 8.5, 2H, ArH), 6.90 (d, J = 8.5, 2H, ArH), 6.48 (d, J = 8.0, 2H, ArH), 5.78 (s, 1H, CH), 2.41 (t, J = 7.0 Hz, 2H, C=CCH₂), 2.33 (t, J = 7.0 Hz, 2H, C=CCH₂), 1.61–1.57 (m, 2H, CH₂), 1.55–1.50 (m, 2H, CH₂), 1.45–1.34 (m, 4H, CH₂), 1.33–1.24 (m, 8H, CH₂), 0.90 (t, J = 7.0 Hz, 3H, CH₃), 0.87 (t, J = 7.0 Hz, 3H, CH₃), 0.25 (s, 9H, TMS), 0.23 (s, 9H, TMS), ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 169.98, 169.58, 148.59, 145.33, 145.21, 144.75, 140.31, 140.23, 140.18, 139.94, 139.29, 138.30, 137.65, 132.92, 132.12, 132.04, 131.95, 131.86, 131.63, 131.49, 130.68, 130.14, 130.09, 128.54, 128.46, 128.44, 128.05, 126.97, 126.88, 126.41, 125.59, 125.78, 125.74, 125.45, 125.37, 125.08, 123.20, 122.95, 122.89, 122.77, 122.36, 104.87, 104.83, 95.38, 95.25, 93.21, 92.92, 91.02, 85.81, 79.58, 79.55, 76.59, 58.57, 56.20, 31.49, 31.45, 29.52, 28.77, 28.71, 28.65, 19.59, 19.52, 14.22, 14.19, 0.14. IR (KBr, cm⁻¹): 2157 ($v_{C=C}$), 1701 ($v_{C=O}$). UV-vis (CDCl₃): λ_{max} (ε [M⁻¹ cm⁻¹]) = 396 (10,100), 376 (10,100), 356 (7,500) nm. HRMS (ESI): m/z calcd for $[M(C_{96}H_{84}O_4Si_2)-H]^-$, 1355.5830; found 1355.5865.


Scheme S5. Synthesis of carboxylic acid monomer (3_C)

Copper (I) iodide (4.57 mg, 24.0 µmol) was added to a solution of C-2H (100 mg, 0.232 mmol), 9-bromoanthracene (309 mg, 1.20 mmol), and tetrakis(triphenylphosphine)palladium(0) (27.7 mg, 24.0 µmol) in a THF-diisopropylamine mixture (1/1 (v/v), 10 mL) and the mixture was stirred at 70 °C for 13 h. After evaporating the solvents, the residue was purified by column chromatography (SiO₂, *n*-hexane/EtOAc = 1/0 to 3/1 (v/v)) and preparative recycling HPLC (CHCl₃) to give pure **3**_C (74.0 mg, 39.4% yield) as a yellow solid. Mp: 218–220 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 8.61 (d, *J* = 8.5 Hz, 4H, ArH), 8.37 (s, 2H, ArH), 7.99 (d, *J* = 8.5 Hz, 4H, ArH), 7.84 (d, *J* = 8.0 Hz, 4H, ArH), 7.56–7.53 (m, 8H, ArH), 7.50–7.47 (m, 6H, ArH), 2.45 (t, *J* = 7.0 Hz, 2H, C≡CCH₂), 1.67–1.61 (m, 2H, CH₂), 1.50–1.44 (m, 2H, CH₂), 1.35–1.32 (m, 4H, CH₂), 0.91 (t, *J* = 7.0 Hz, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 170.87, 140.35, 139.94, 132.76, 132.20, 131.89, 131.27, 130.34, 128.85, 128.81, 127.92, 126.86, 126.76, 126.28, 125.81, 123.56, 117.22, 100.45, 93.41, 87.51, 79.66, 31.52, 28.80, 28.73, 22.71, 19.66, 14.23. IR (KBr, cm⁻¹): 2170 (v_{C=C}), 1700 (v_{C=O}). UV-vis (CDCl₃): λ_{max} (ε [M⁻¹ cm⁻¹]) = 427 (45,000), 405 (48,300), 388 (32,000) nm. HRMS (ESI): m/z calcd for [M(C₅₉H₄₂O₂)–H]⁻, 781.3107; found 781.3102.

Fig. S1. ¹H NMR spectra of (a) $\mathbf{1}_{M}$ (0.50 mM), $\mathbf{1}_{M}$ -O₂ (0.45 mM), [4+2]-*anti*- $\mathbf{2}_{MM}$ (5.0 mM), [4+4]-*anti*- $\mathbf{2}_{MM}$ (1.5 mM), (b) $\mathbf{1}_{C}$ (0.50 mM), $\mathbf{1}_{C}$ -O₂ (0.45 mM), [4+2]-*anti*- $\mathbf{2}_{CC}$ (4.6 mM), [4+4]-*anti*- $\mathbf{2}_{CC}$ (0.32 mM), (c) $\mathbf{3}_{C}$ (0.50 mM) and a mixture of $\mathbf{3}_{C}$ - $\mathbf{2}_{O}$ and $\mathbf{3}_{C}$ -O₂ (0.25 mM) in CDCl₃ at 25 °C. * denotes the peak of 1,1,2,2-tetrachloroethane used as an internal standard.

Fig. S2. Absorption spectra of (a) $\mathbf{1}_{M}$ (0.50 mM), [4+2]-*anti*- $\mathbf{2}_{MM}$ (0.19 mM), [4+4]-*anti*- $\mathbf{2}_{MM}$ (0.11 mM), $\mathbf{1}_{M}$ -O₂ (calculated, 0.45 mM), (b) $\mathbf{1}_{C}$ (0.50 mM), [4+2]-*anti*- $\mathbf{2}_{CC}$ (0.45 mM), [4+4]-*anti*- $\mathbf{2}_{CC}$ (0.32 mM), and $\mathbf{1}_{C}$ -O₂ (calculated, 0.45 mM) in CDCl₃ at ambient temperature. The absorption spectra of $\mathbf{1}_{M}$ -O₂ and $\mathbf{1}_{C}$ -O₂ were calculated based on the absorption spectra of $\mathbf{1}_{M}$ and $\mathbf{1}_{C}$ which remained unreacted (ca. 10%) whose contribution were subtracted from the observed spectra of a mixture of $\mathbf{1}_{M}$ (0.05 mM) and $\mathbf{1}_{M}$ -O₂ (0.45 mM) (see *Fig. S6b*) and a mixture of $\mathbf{1}_{C}$ (0.05 mM) and $\mathbf{1}_{C}$ -O₂ (0.45 mM) (see *Fig. S16b*), respectively.

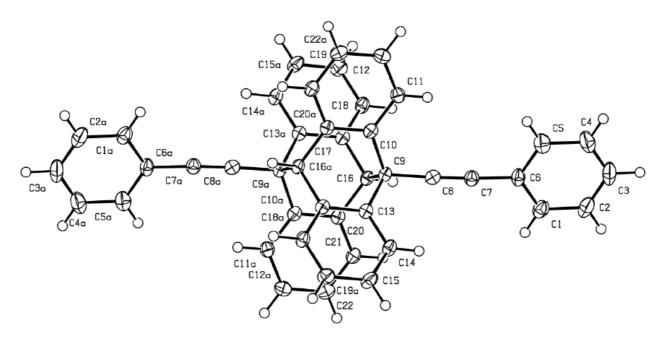
3. General Procedures of Photoirradiation

3-1. Photoreaction in Undegassed Solution. A typical experimental procedure: Stock solutions of 1_{M} (8.0 mM; solution I) and 1,1,2,2-tetrachloroethane (5.2 mM; solution II) in dry CDCl₃ were prepared. Aliquots of solutions I (0.40 µmol, 50 µL) and II (0.26 µmol, 50 µL), and dry CDCl₃ (700 µL) were added into a Teflon-valved NMR tube (5-mm (i.d.)) by a syringe. The solution was then irradiated with light (> 400 nm) at 25 °C for 180 s using a cut-off filter. The reaction progress was monitored by ¹H NMR spectroscopy (*Fig. S6a*).

3-2. Photoreaction in Degassed Solution. A typical experimental procedure: Stock solutions of 1_M (8.0 mM; solution I) and 1,1,2,2-tetrachloroethane (7.6 mM; solution II) in dry CDCl₃ were prepared. Aliquots of solutions I (0.40 µmol, 50 µL) and II (0.38 µmol, 50 µL), and dry CDCl₃ (700 µL) were added into a Teflon-valved NMR tube (5-mm (i.d.)) by a syringe. The solution was degassed five times by means of freeze-pump out-thaw (nitrogen) cycles, and then irradiated with light (> 400 nm) at 25 °C for 30 min under nitrogen using a cut-off filter. The reaction progress was monitored by ¹H NMR spectroscopy (*Fig. S11a*).

3-3. Isolation of [4+2]-anti- 2_{CC} and [4+4]-anti- 2_{CC} . A mixture of 1_C (0.50 mM) and A (0.50 mM) in degassed CDCl₃ (0.80 mL) was irradiated with light (> 400 nm) for 90 min using a cut-off filter at 25 °C. The ¹H NMR spectral changes were shown in *Fig. S22a*. After evaporating the solvent, the residue was purified by column chromatography (NH-SiO₂, *n*-hexane/EtOAc/AcOH = 1/1/0 to 1/1/0.1 (v/v/v)) to afford a mixture of carboxylic acids ($\mathbf{1}_{c}$, [4+2]-anti- $\mathbf{2}_{cc}$, and [4+4]-anti- $\mathbf{2}_{cc}$) and the monomeric amidine (A). The mixture was then dissolved in $CHCl_3$ (5 mL) and the solution was washed with 1 M HCl (5 mL) and evaporated to dryness and the ¹H NMR spectrum of the residue was measured in $CDCl_3$ (1 mL) to estimate а ratio of the photodimers $([4+2]-anti-2_{CC}/[4+4]-anti-2_{CC})$ as shown in *Fig. S22b*.

3-4. Isolation of [4+2]*-anti*-4_{CC} and [4+4]*-anti*-4_{CC}. A mixture of 3_C (0.50 mM) and T_{AA} (0.25 mM) in degassed CDCl₃ (0.80 mL) was irradiated with light (> 400 nm) for 120 s using a cut-off filter at 25 °C. The ¹H NMR spectral changes were shown in *Fig. S36a*. After evaporating the solvent, the residue was purified by column chromatography (NH-SiO₂, CHCl₃/MeOH/AcOH = 50/1/0 to 10/1/0.1 (v/v/v)) to afford a mixture of carboxylic acids and the amidine template (T_{AA}). The carboxylic acid mixtures were then dissolved in CHCl₃ (5 mL) and the solution was washed with 1 M HCl (5 mL) and evaporated to dryness. The ¹H NMR spectrum of the residue was measured in CDCl₃ (1 mL) to estimate a ratio of the photodimers ([4+2]-*anti*-4_{CC}/[4+4]-*anti*-4_{CC}) as shown in *Fig. S37g*.

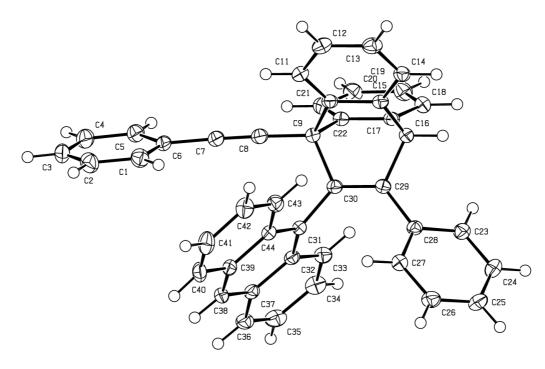

4. X-ray Crystallographic Data

Crystallographic Data of [4+4]-*anti*-2_{MM}. X-ray diffraction data set for [4+4]-*anti*-2_{MM} was collected on a Rigaku Saturn 724+ CCD diffractometer with Mo K α radiation ($\lambda = 0.71075$ Å) at 103 K. Single crystals of [4+4]-*anti*-2_{MM} [C₂₂H₁₄, MW = 278.33] suitable for X-ray analysis were obtained by slow diffusion of methanol into a CH₂Cl₂ solution of [4+4]-*anti*-2_{MM}, and a single colorless crystal with dimensions of 0.08 × 0.04 × 0.02 mm³ was selected for intensity measurements. The unit cell was monoclinic with the space group *P*2₁/c. The lattice constants with Z = 4, $\rho_{calcd} = 1.264$ g cm⁻³, $\mu(Mo_{K\alpha}) = 0.072$ mm⁻¹, F(000) = 584.0, $2\theta_{max} = 54.84^{\circ}$ were a = 11.819(5) Å, b = 10.742(3) Å, c = 12.543(5) Å, and V = 1,463.1(9) Å³. A total of 11,613 reflections was collected, of which 3,334 reflections were independent ($R_{int} = 0.0306$). The structure was refined to final $R_1 = 0.0603$ for 2,933 data [$I > 2\sigma(I)$] with 199 parameters and $wR_2 = 0.1403$ for all data, GOF = 1.122, and residual electron density max/min = 0.253/-0.222 e Å⁻³. The ORTEP drawing is shown in **Fig. S3**, and the crystal data and structure refinement are listed in **Table S1**.

Data collection and processing were conducted using the Rigaku CrystalClear software package.^{S4} The structure was solved by direct methods using Sir2004^{S5} and refined by full-matrix least squares methods on F^2 with SHELXL-97 program^{S6,S7} using Yadokari-XG 2009.^{S8,S9} All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were calculated geometrically and refined using the riding model. Crystallographic data have been deposited at the CCDC (12 Union Road, Cambridge CB2 1EZ, UK) and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 1503774.

Table S1. Crystal Data and Structure Refinement for [4+4]-anti- 2_{MM}

$C_{22}H_{14}$ 278.33 103 K 0.71075 Å Monoclinic $P2_{1}/c$ a = 11.819(5) Å b = 10.742(3) Å c = 12.543(5) Å	$\alpha = 90^{\circ}$ $\beta = 113.260(5)^{\circ}$ $\gamma = 90^{\circ}$
1,463.1(9) Å ³	
4	
1.264 g/cm^3	
0.072 mm^{-1}	
584.0	
3.28 to 27.44°	
$-15 \le h \le 15, -13 \le k \le 9, -16 \le l \le 16$	
11,613	
$3,334 [R_{int} = 0.0306]$	
99.6 %	
Semi-empirical from equivalents	
1.0000 and 0.9233	
Full-matrix least-squares on F ²	
3,334 / 0 / 199	
11122	
$R_1 = 0.0694, wR_2 = 0.1403$	
$0.253 \text{ and } -0.222 \text{ e}\text{\AA}^{-3}$	
	278.33 103 K 0.71075 Å Monoclinic $P2_1/c$ a = 11.819(5) Å b = 10.742(3) Å c = 12.543(5) Å 1,463.1(9) Å ³ 4 1.264 g/cm ³ 0.072 mm ⁻¹ 584.0 0.08 × 0.04 × 0.02 mm ³ 3.28 to 27.44° -15 ≤ h ≤ 15, -13 ≤ k ≤ 9, -1 11,613 3,334 [R_{int} =0.0306] 99.6 % Semi-empirical from equivale 1.0000 and 0.9233 Full-matrix least-squares on 1


Fig. S3. ORTEP drawing of the crystal structure of [4+4]-*anti*- 2_{MM} with thermal ellipsoids at 50% probability.

Crystallographic Data of [4+2]-*anti*-2_{MM}. X-ray diffraction data set for [4+2]-*anti*-2_{MM} was collected on a Rigaku Saturn 724+ CCD diffractometer with Mo K α radiation ($\lambda = 0.71075$ Å) at 103 K. Single crystals of [4+2]-*anti*-2_{MM} [C₄₄H₂₈, MW = 556.66] suitable for X-ray analysis were obtained by slow diffusion of methanol into a CH₂Cl₂ solution of [4+2]-*anti*-2_{MM}, and a single colorless crystal with dimensions of 0.20 × 0.15 × 0.09 mm³ was selected for intensity measurements. The unit cell was monoclinic with the space group *P*2₁/c. The lattice constants with Z = 4, $\rho_{calcd} = 1.253$ g cm⁻³, $\mu(Mo_{K\alpha}) = 0.071$ mm⁻¹, *F*(000) = 1168.0, $2\theta_{max} = 55.04^{\circ}$ were *a* = 10.616(4) Å, *b* = 18.469(7) Å, *c* = 15.306(6) Å, and *V* = 2950(2) Å³. A total of 23,660 reflections was collected, of which 6,719 reflections were independent ($R_{int} = 0.0443$). The structure was refined to final $R_1 = 0.0491$ for 6,406 data [*I*>2 $\sigma(I)$] with 397 parameters and *w* $R_2 = 0.1236$ for all data, *GOF* = 1.072, and residual electron density max/min = 0.359/-0.222 e Å⁻³. The ORTEP drawing is shown in *Fig. S4*, and the crystal data and structure refinement are listed in *Table S2*.

Data collection and processing were conducted using the Rigaku CrystalClear software package.^{S4} The structure was solved by direct methods using Sir2004^{S5} and refined by full-matrix least squares methods on F^2 with SHELXL-97 program^{S6,S7} using Yadokari-XG 2009.^{S8,S9} All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were calculated geometrically and refined using the riding model. Crystallographic data have been deposited at the CCDC (12 Union Road, Cambridge CB2 1EZ, UK) and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 1503775.

Table S2. Crystal Data and Structure Refinement for [4+2]-anti- 2_{MM}

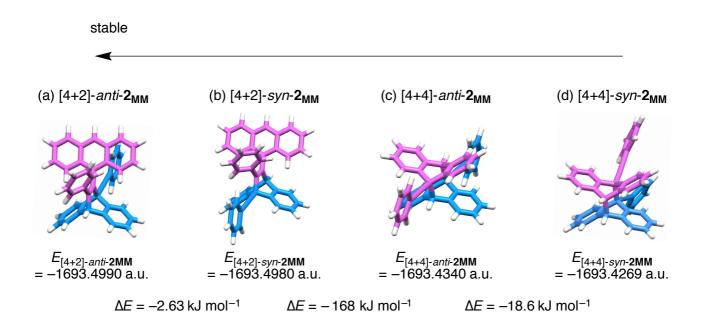
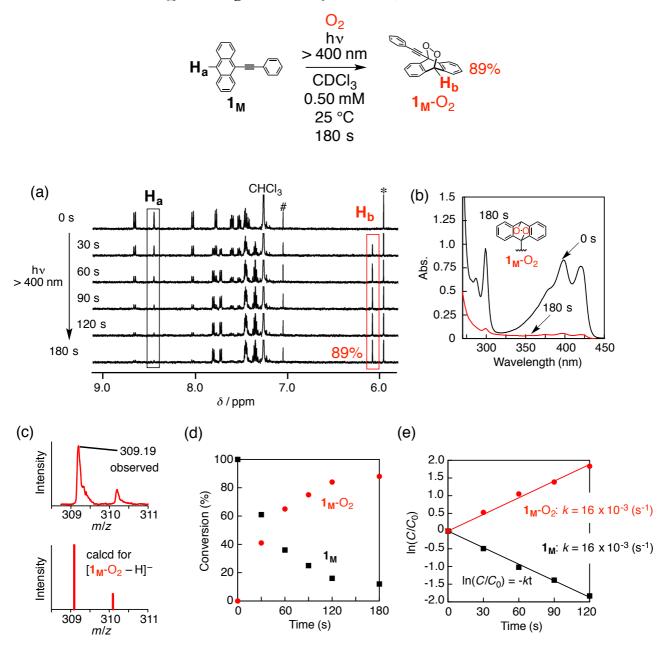
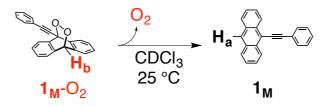
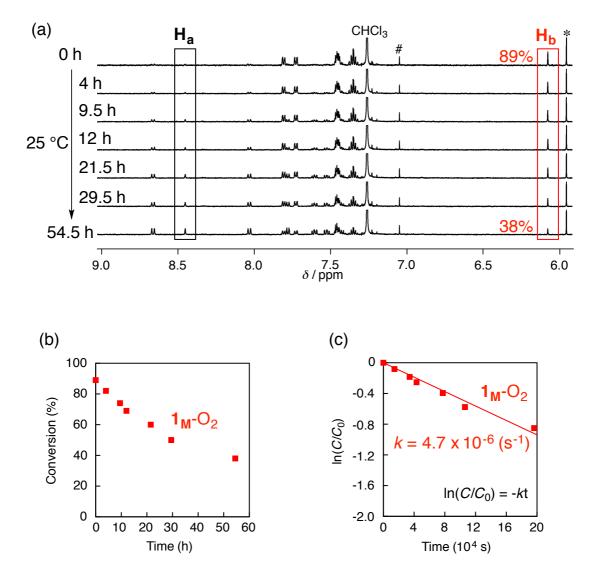

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	C ₄₄ H ₂₈ 556.66 103(2) K 0.71075 Å Monoclinic $P2_1/c$ a = 10.616(4) Å b = 18.469(7) Å c = 15.306(6) Å	$\alpha = 90^{\circ}$ $\beta = 100.612(7)^{\circ}$ $\gamma = 90^{\circ}$
Volume	2,950(2) Å ³	
Z	4	
Density (calculated)	1.253 g/cm^3	
Absorption coefficient	0.072 mm^{-1}	
F(000)	1168.0	
Crystal size	$0.20 \times 0.15 \times 0.09 \text{ mm}^3$	
Theta range for data collection	3.03 to 27.48°	
Index ranges	$-13 \le h \le 13, -23 \le k \le 23, -18 \le l \le 19$	
Reflections collected	23,660	
Independent reflections	$6,719 [R_{int} = 0.1236]$	
Completeness to theta = 27.48°	99.5 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.0000 and 0.9192	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6,719 / 0 / 397	
Goodness-of-fit on F ²	1.125	
Final R indices [<i>I</i> >2sigma(<i>I</i>)]	$R_1 = 0.0491, wR_2 = 0.1214$	
<i>R</i> indices (all data)	$R_1 = 0.0516, wR_2 = 0.1236$	
Largest diff. peak and hole	0.359 and -0.222 eÅ ⁻³	

Fig. S4. ORTEP drawing of the crystal structure of [4+2]-*anti*- 2_{MM} with thermal ellipsoids at 50% probability.

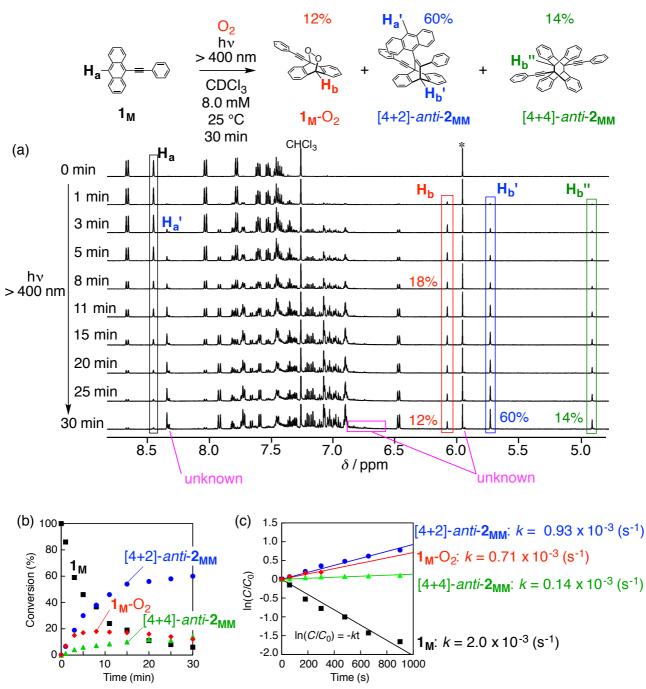
5. Theoretical Studies of the Photodimers [4+4]-anti- 2_{MM} , [4+4]-syn- 2_{MM} , [4+2]-anti- 2_{MM} , and [4+2]-syn- 2_{MM}

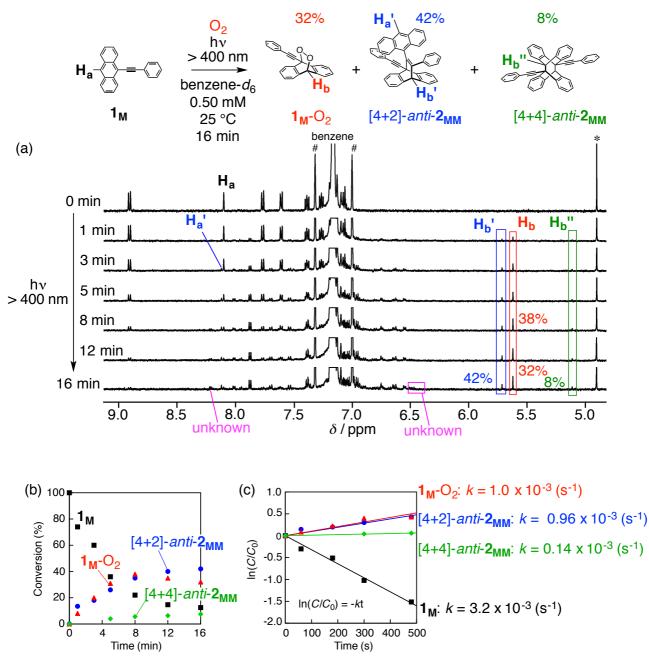

The molecular modelling was performed on a Windows XP PC with the ArgusLab software.^{S10} The initial model structures were constructed based on the crystal structure of [4+4]-*anti*-2_{MM} or [4+2]-*anti*-2_{MM}. The initial models were then fully optimised by semi-empirical molecular orbital (MO) calculations (PM6 method^{S11} in MOPAC2012^{S12}) and further density functional theory (DFT) calculations at the B3LYP level and the 6-31G* basis set in *Gaussian 09* software (Gaussian, Inc., Pittsburgh, PA).^{S13} Computer resources for the DFT calculations were provided by the Information Technology Center of Nagoya University. The resultant energy-minimised structures with their total energies are depicted in *Fig. S5*.


Fig. S5. Capped-stick drawings of the structures of (a) [4+2]-*anti*- 2_{MM} , (b) [4+2]-*syn*- 2_{MM} , (c) [4+4]-*anti*- 2_{MM} , and (d) [4+4]-*syn*- 2_{MM} optimised by DFT calculations. DFT-calculated energies (*E*) and energy differences (ΔE) are also shown in the bottom.

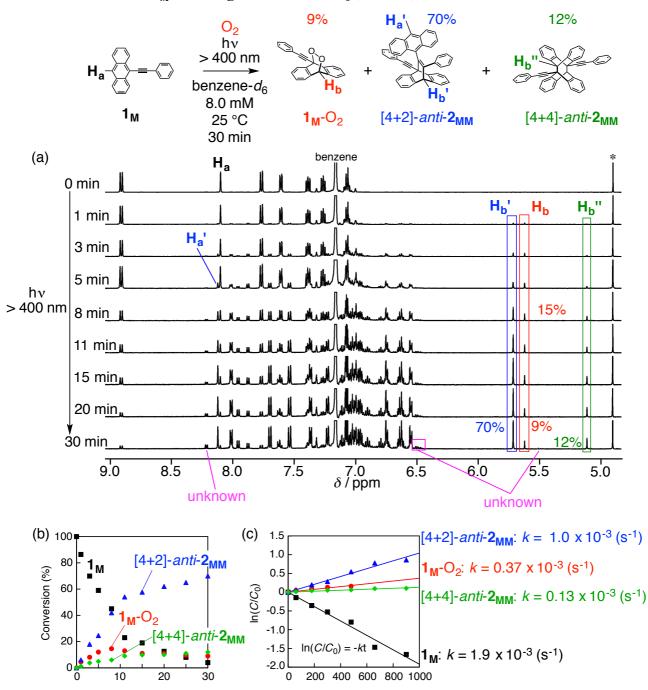

6. Photoreaction of Model Anthracene Monomer 1_M in the Presence of Oxygen

6-1. Photoreaction of 1_M in Undegassed CDCl₃ (0.50 mM)


Fig. S6. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{M}$ (500 MHz, undegassed CDCl₃, 25 °C, 0.50 mM) upon irradiation of light (> 400 nm). # and * denote the ¹³C satellite peaks of the solvent and the peak of 1,1,2,2-tetrachloroethane (0.32 mM) used as an internal standard, respectively. (b) Time-dependent absorption spectral changes of $\mathbf{1}_{M}$ (0.50 mM) in undegassed CDCl₃ before (0 s) and after (180 s) irradiation of light (> 400 nm). Cell length = 1 mm. (c) Negative mode ESI-MS spectrum (CH₃CN/CH₃OH = 1/1 (*v/v*)) of $\mathbf{1}_{M}$ after irradiation of light (> 400 nm) for 180 s in undegassed CDCl₃. (d) Time-conversion relationships and (e) kinetic plots of the photooxidation of $\mathbf{1}_{M}$ (undegassed CDCl₃, 25 °C, 0.50 mM) estimated from the integral ratios of the peaks for H_a ($\mathbf{1}_{M}$), H_b ($\mathbf{1}_{M}$ -O₂), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).


Fig. **S7.** (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{M}$ -O₂ at 25 °C under shielded light in CDCl₃. # and * denote the ¹³C satellite peaks of the solvent and the peak of 1,1,2,2-tetrachloroethane (0.32 mM) used as an internal standard, respectively. The photooxidised $\mathbf{1}_{M}$ -O₂ was obtained in an undegassed CDCl₃ solution of $\mathbf{1}_{M}$ (0.50 mM) upon irradiation of light (> 400 nm) for 180 s (see *Fig. S6a*). (b) Time-conversion relationships and (c) kinetic plots of the thermal reverse reaction of $\mathbf{1}_{M}$ -O₂ (CDCl₃, 25 °C, 0.50 mM) estimated from the integral ratios of the peaks for H_a ($\mathbf{1}_{M}$), H_b ($\mathbf{1}_{M}$ -O₂), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

6-2. Photoreaction of 1_M in Undegassed CDCl₃ (8.0 mM)


Fig. S8. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{M}$ (500 MHz, undegassed CDCl₃, 25 °C, 8.0 mM) upon irradiation of light (> 400 nm). * denotes the peak of 1,1,2,2-tetrachloroethane (2.8 mM) used as an internal standard. The unknown peaks are probably due to photolysis products of $\mathbf{1}_{M}$ -O₂. (b) Time-conversion relationships and (c) kinetic plots of the photodimerisation of $\mathbf{1}_{M}$ (undegassed CDCl₃, 25 °C, 8.0 mM) estimated from the integral ratios of the peaks for H_a ($\mathbf{1}_{M}$), H_b ($\mathbf{1}_{M}$ -O₂), H_b' ([4+2]-*anti*- $\mathbf{2}_{MM}$), H_b'' ([4+4]-*anti*- $\mathbf{2}_{MM}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

6-3. Photoreaction of 1_M in Undegassed Benzene-d₆ (0.50 mM)

Fig. S9. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{M}$ (500 MHz, undegassed benzene- d_{6} , 25 °C, 0.50 mM) upon irradiation of light (> 400 nm). # and * denote the ¹³C satellite peaks of the solvent and the peak of 1,1,2,2-tetrachloroethane (0.75 mM) used as an internal standard, respectively. The unknown peaks are probably due to photolysis products of $\mathbf{1}_{M}$ -O₂. (b) Time-conversion relationships and (c) kinetic plots of the photodimerisation of $\mathbf{1}_{M}$ (undegassed benzene- d_{6} , 25 °C, 0.50 mM) estimated from the integral ratios of the peaks for H_a ($\mathbf{1}_{M}$), H_b ($\mathbf{1}_{M}$ -O₂), H_b' ([4+2]-*anti*- $\mathbf{2}_{MM}$), H_b'' ([4+4]-*anti*- $\mathbf{2}_{MM}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

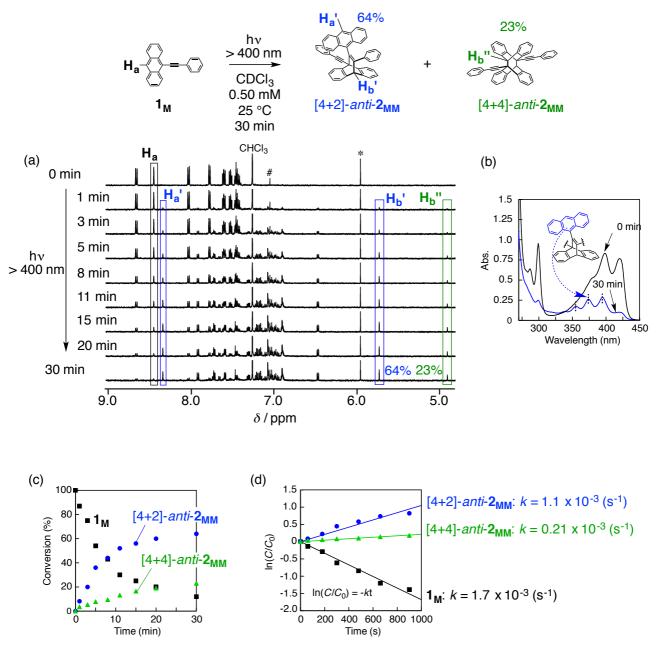
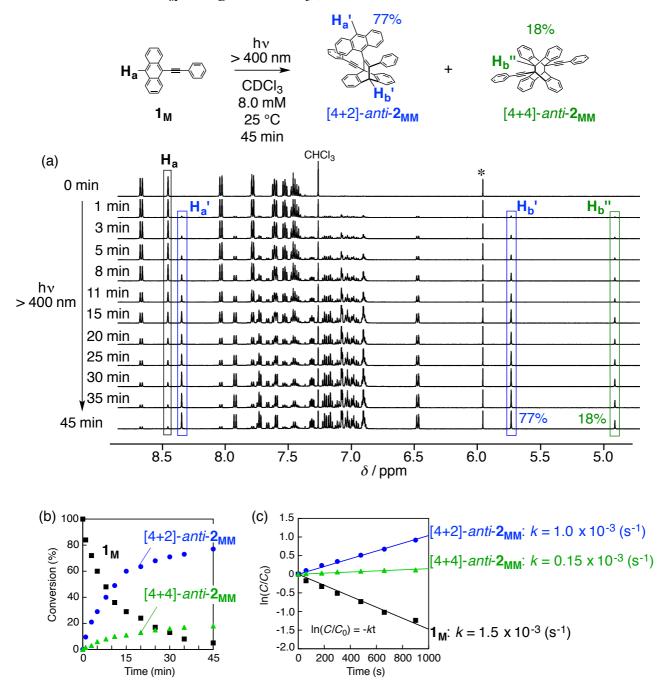
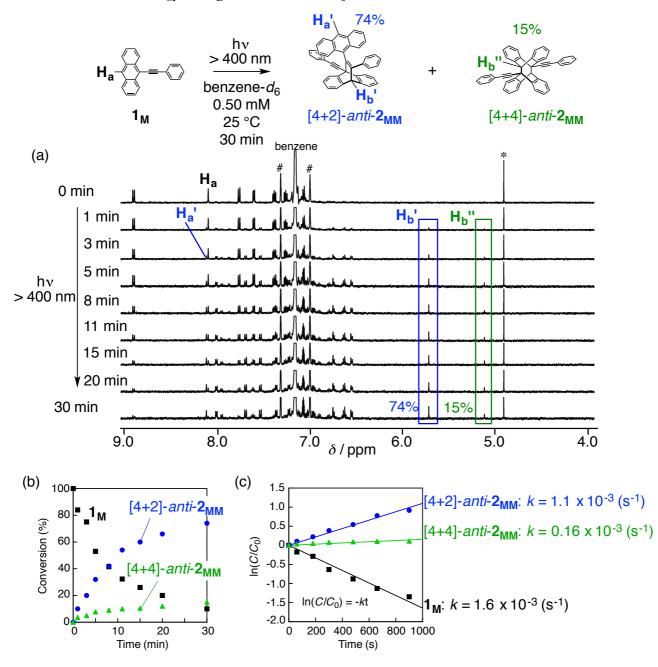

6-4. Photoreaction of 1_M in Undegassed Benzene-d₆ (8.0 mM)

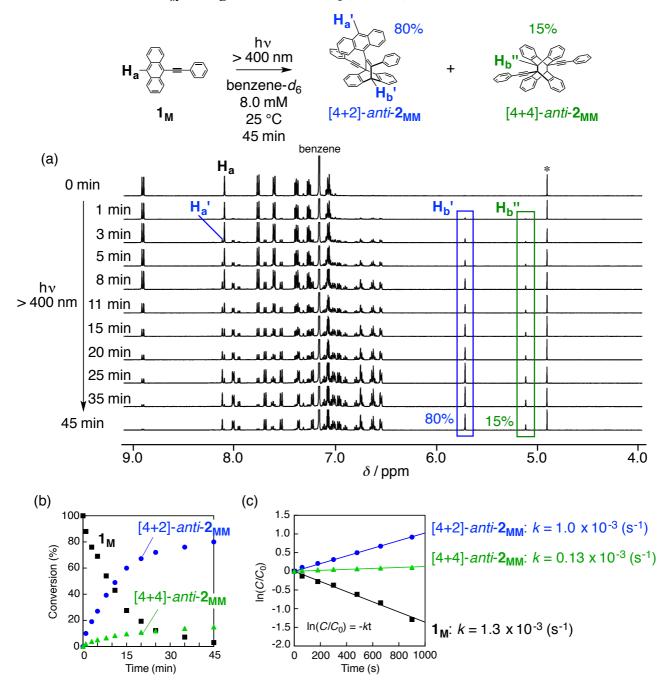
Fig. S10. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{M}$ (500 MHz, undegassed benzene- d_{6} , 25 °C, 8.0 mM) upon irradiation of light (> 400 nm). * denotes the peak of 1,1,2,2-tetrachloroethane (3.8 mM) used as an internal standard. The unknown peaks are probably due to photolysis products of $\mathbf{1}_{M}$ -O₂. (b) Time-conversion relationships and (c) kinetic plots of the photodimerisation of $\mathbf{1}_{M}$ (undegassed benzene- d_{6} , 25 °C, 8.0 mM) estimated from the integral ratios of the peaks for \mathbf{H}_{a} ($\mathbf{1}_{M}$), \mathbf{H}_{b} ($\mathbf{1}_{M}$ -O₂), \mathbf{H}_{b} ' ([4+2]-*anti*- $\mathbf{2}_{MM}$), \mathbf{H}_{b} '' ([4+4]-*anti*- $\mathbf{2}_{MM}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).


7. Photoreaction of Model Anthracene Monomer 1_M in the Absence of Oxygen

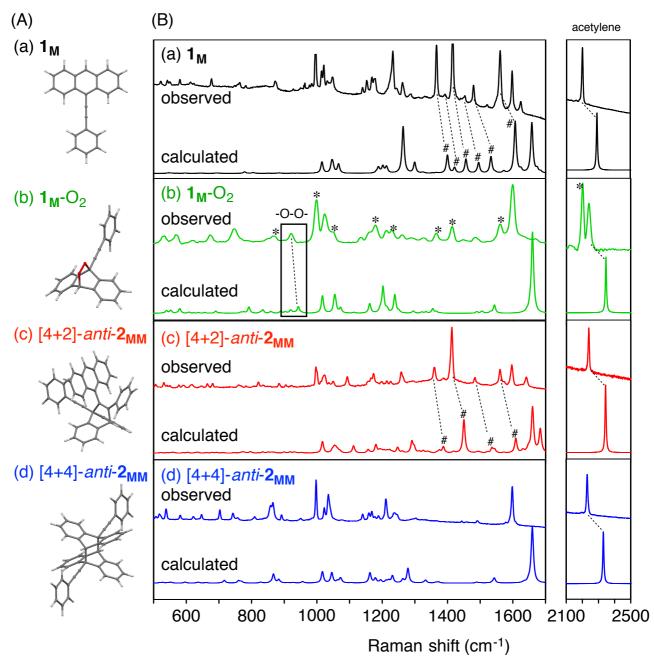
7-1. Photoreaciton of 1_M in Degassed CDCl₃ (0.50 mM)


Fig. S11. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{M}$ (500 MHz, degassed CDCl₃, 25 °C, 0.50 mM) upon irradiation of light (> 400 nm). # and * denote the ¹³C satellite peaks of the solvent and the peak of 1,1,2,2-tetrachloroethane (0.48 mM) used as an internal standard, respectively. (b) Time-dependent absorption spectral changes of $\mathbf{1}_{M}$ (0.50 mM) in degassed CDCl₃ before (0 min) and after (30 min) irradiation of light (> 400 nm). Cell length = 1 mm. (c) Time-conversion relationships and (d) kinetic plots of the photodimerisation of $\mathbf{1}_{M}$ (degassed CDCl₃, 25 °C, 0.50 mM) estimated from the integral ratios of the peaks for H_a ($\mathbf{1}_{M}$), H_b'' ([4+2]-*anti*- $\mathbf{2}_{MM}$), H_b''' ([4+4]-*anti*- $\mathbf{2}_{MM}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

7-2. Photoreaction of 1_M in Degassed CDCl₃ (8.0 mM)

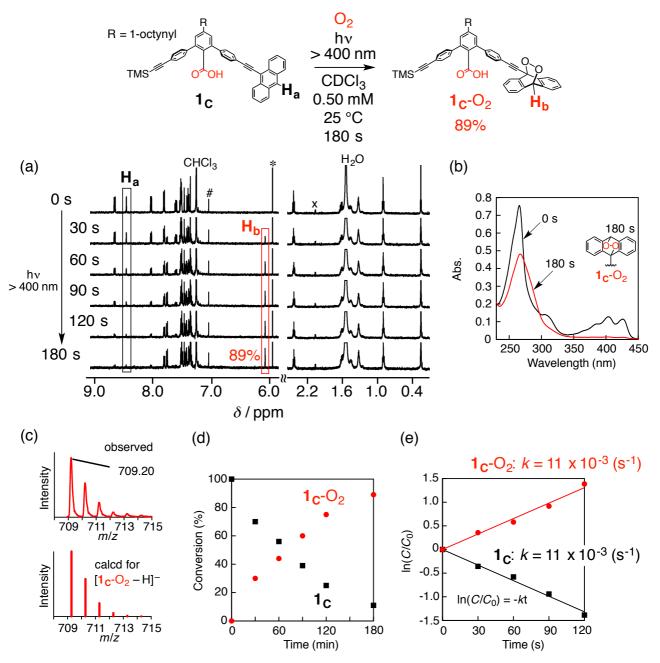

Fig. S12. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{M}$ (500 MHz, degassed CDCl₃, 25 °C, 8.0 mM) upon irradiation of light (> 400 nm). * denotes the peak of 1,1,2,2-tetrachloroethane (1.3 mM) used as an internal standard. (b) Time-conversion relationships and (c) kinetic plots of the photodimerisation of $\mathbf{1}_{M}$ (degassed CDCl₃, 25 °C, 8.0 mM) estimated from the integral ratios of the peaks for H_a ($\mathbf{1}_{M}$), H_b' ([4+2]-*anti*- $\mathbf{2}_{MM}$), H_b'' ([4+4]-*anti*- $\mathbf{2}_{MM}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

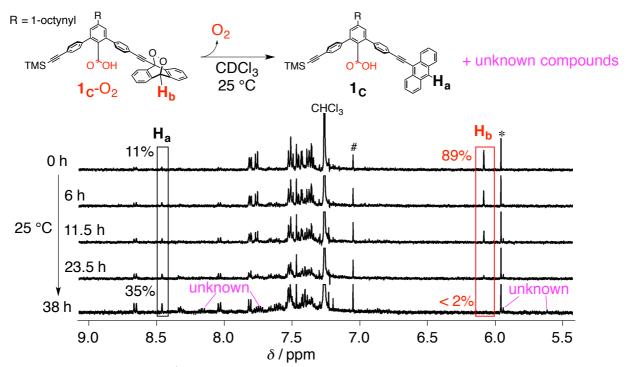
7-3. Photoreaction of $1_{\rm M}$ in Degasssed Benzene- d_6 (0.50 mM)


Fig. S13. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{M}$ (500 MHz, degassed benzene- d_{6} , 25 °C, 0.50 mM) upon irradiation of light (> 400 nm). # and * denote the ¹³C satellite peaks of the solvent and the peak of 1,1,2,2-tetrachloroethane (0.25 mM) used as an internal standard, respectively. (b) Time-conversion relationships and (c) kinetic plots of the photodimerisation of $\mathbf{1}_{M}$ (degassed benzene- d_{6} , 25 °C, 0.50 mM) estimated from the integral ratios of the peaks for \mathbf{H}_{a} ($\mathbf{1}_{M}$), \mathbf{H}_{b} ' ([4+2]-*anti*- $\mathbf{2}_{MM}$), \mathbf{H}_{b} '' ([4+4]-*anti*- $\mathbf{2}_{MM}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

7-4. Photoreaction of $1_{\rm M}$ in Degassed Benzene- d_6 (8.0 mM)

Fig. S14. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{M}$ (500 MHz, degassed benzene- d_{6} , 25 °C, 8.0 mM) upon irradiation of light (> 400 nm). * denotes the peak of 1,1,2,2-tetrachloroethane (1.4 mM) used as an internal standard. (b) Time-conversion relationships and (c) kinetic plots of the photodimerisation of $\mathbf{1}_{M}$ (degassed benzene- d_{6} , 25 °C, 8.0 mM) estimated from the integral ratios of the peaks for H_{a} ($\mathbf{1}_{M}$), H_{b} ' ([4+2]-*anti*- $\mathbf{2}_{MM}$), H_{b} '' ([4+4]-*anti*- $\mathbf{2}_{MM}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).


8. Raman Experiments


Fig. **S15.** (A) Capped-stick drawings of the structures of (a) $\mathbf{1}_{M}$, (b) $\mathbf{1}_{M}$ -O₂, (c) [4+2]-*anti*- $\mathbf{2}_{MM}$, and (d) [4+4]-*anti*- $\mathbf{2}_{MM}$ optimised by DFT calculations and (B) Experimental (top) and DFT simulated (bottom) Raman spectra of (a) $\mathbf{1}_{M}$, (b) $\mathbf{1}_{M}$ -O₂, (c) [4+2]-*anti*- $\mathbf{2}_{MM}$, and (d) [4+4]-*anti*- $\mathbf{2}_{MM}$. *, #, and -O-O- denote the peaks due to $\mathbf{1}_{M}$, the in-plane anthracene breathing modes, and O-O stretching vibration bands, respectively. DFT calculations were performed at the B3LYP level and the 6-31G* basis set in *Gaussian* 09 software (Gaussian, Inc., Pittsburgh, PA).^{S13} The Raman spectra of $\mathbf{1}_{M}$, [4+2]-*anti*- $\mathbf{2}_{MM}$, and [4+4]-*anti*- $\mathbf{2}_{MM}$ were measured on a confocal Raman microscope (Renishaw inVia Raman system, Renishaw, Inc.) using a laser beam at 785 nm for exicitation and an exposure time of 10 s. The Raman spectrum of $\mathbf{1}_{M}$ -O₂ was measured on a confocal Raman microscope (NRS-5100, JASCO) using a laser beam at 1064 nm for exitation and an exposure time of 60 s.

9. Photoreaction of Mono-9-Phenylethynylanthracene-Bound Carboxylic Acid Monomer in the Presence of Oxygen

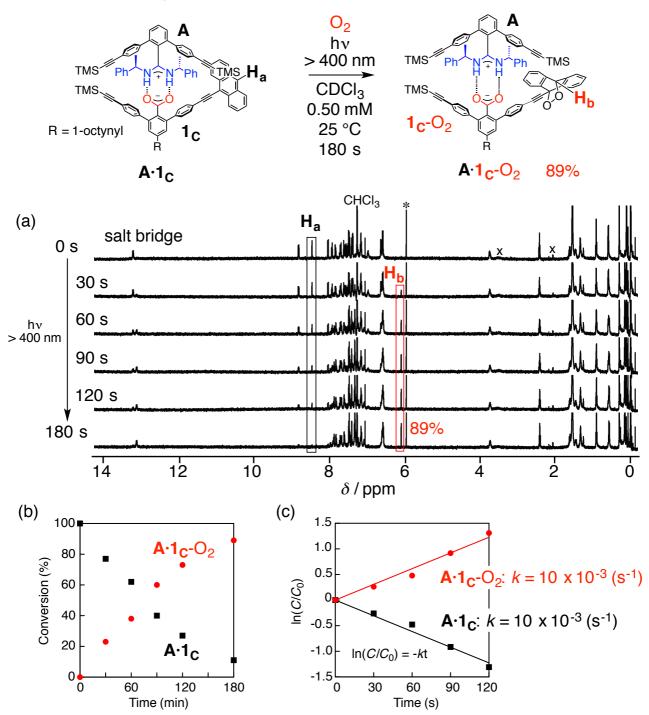

9-1. Photoreaction of 1_C in Undegassed CDCl₃

Fig. **S16.** (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{C}$ (500 MHz, undegassed CDCl₃, 25 °C, 0.50 mM) upon irradiation of light (> 400 nm). #, *, and x denote the ¹³C satellite peaks of the solvent, the peak of 1,1,2,2-tetrachloroethane (0.25 mM) used as an internal standard, and impurities contained in CDCl₃, respectively. (b) Time-dependent absorption spectral changes of $\mathbf{1}_{C}$ (0.50 mM) in undegassed CDCl₃ before (0 s) and after (180 s) irradiation of light (> 400 nm). Cell length = 0.1 mm. (c) Negative mode ESI-MS spectrum (CH₃CN/CH₃OH = 1/1 (*v/v*)) of $\mathbf{1}_{C}$ after irradiation of light (> 400 nm) for 180 s in undegassed CDCl₃. (d) Time-conversion relationships and (e) kinetic plots of the photooxidation of $\mathbf{1}_{C}$ (undegassed CDCl₃, 25 °C, 0.50 mM) estimated from the integral ratios of the peaks for H_a ($\mathbf{1}_{C}$), H_b ($\mathbf{1}_{C}$ -O₂), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

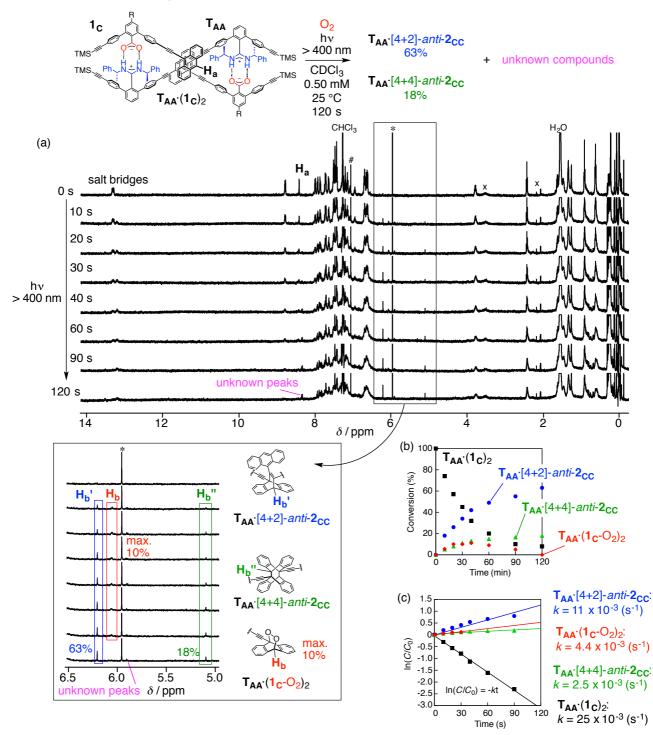


Fig. S17. Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{C}$ -O₂ (89%) at 25 °C under shielded light in CDCl₃. # and * denote the ¹³C satellite peaks of the solvent and the peak of 1,1,2,2-tetrachloroethane (0.32 mM) used as an internal standard, respectively. The photooxidised $\mathbf{1}_{C}$ -O₂ was obtained in an undegassed CDCl₃ solution of $\mathbf{1}_{C}$ (0.50 mM) upon irradiation of light (> 400 nm) for 180 s (see **Fig. S16a**). The photooxidised $\mathbf{1}_{C}$ -O₂ was not stable and thermally decomposed back to the monomer $\mathbf{1}_{C}$ together with a small amount of an unkown compound.

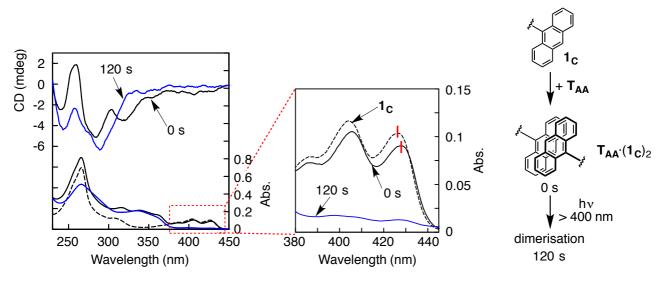

9-2. Photoreaction of 1_C in Undegassed CDCl₃ in the Presence of Monomeric Amidine A

Fig. S18. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{C}$ (500 MHz, undegassed CDCl₃, 25 °C, 0.50 mM) in the presence of **A** (0.50 mM) upon irradiation of light (> 400 nm). * and **x** denote the peak of 1,1,2,2-tetrachloroethane (0.20 mM) used as an internal standard and impurities contained in CDCl₃, respectively. The peaks were assigned on the basis of the ¹H NMR spectra shown in *Fig. S27*. (b) Time-conversion relationships and (c) kinetic plots of the photooxidation of $\mathbf{1}_{C}$ (undegassed CDCl₃, 25 °C, 0.50 mM) in the presence of **A** (0.50 mM) estimated from the integral ratios of the peaks for H_{a} (**A**·1_C), H_{b} (**A**·1_C-O₂), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

9-3. Photoreaction of 1_C in Undegassed CDCl₃ in the Presence of Amidine Template T_{AA}

Fig. S19. (a) Time-dependent ¹H NMR spectral changes of 1_{c} (500 MHz, undegassed CDCl₃, 25 °C, 0.50 mM) in the presence of T_{AA} (0.25 mM) upon irradiation of light (> 400 nm). #, *, and x denote the 13 C satellite peaks of the solvent, the peak of 1,1,2,2-tetrachloroethane (0.35 mM) used as an internal standard, and impurities contained in CDCl₃, respectively. The unknown peaks are probably due to photolysis products of $\mathbf{1}_{C}$ -O₂. The peaks were assigned on the basis of the ¹H NMR spectra shown in Fig. S28. (b) Time-conversion relationships and (c) kinetic plots of the photodimerisation of $\mathbf{1}_{c}$ (undegassed CDCl₃, 25 °C, 0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) estimated from the integral ratios of the peaks for H_a (T_{AA} ·(1_C)₂), H_b (T_{AA} ·(1_C -O₂)₂), H_b $(\mathbf{T}_{AA} \cdot [4+4] - anti - \mathbf{2}_{CC}),$ $(\mathbf{T}_{AA} \cdot [4+2] - anti - \mathbf{2}_{CC}),$ $H_{\rm b}$ " and internal the standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

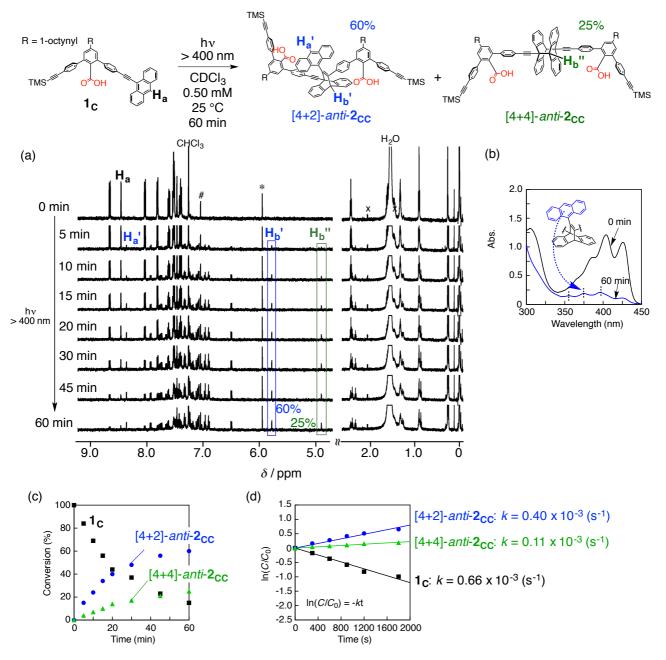
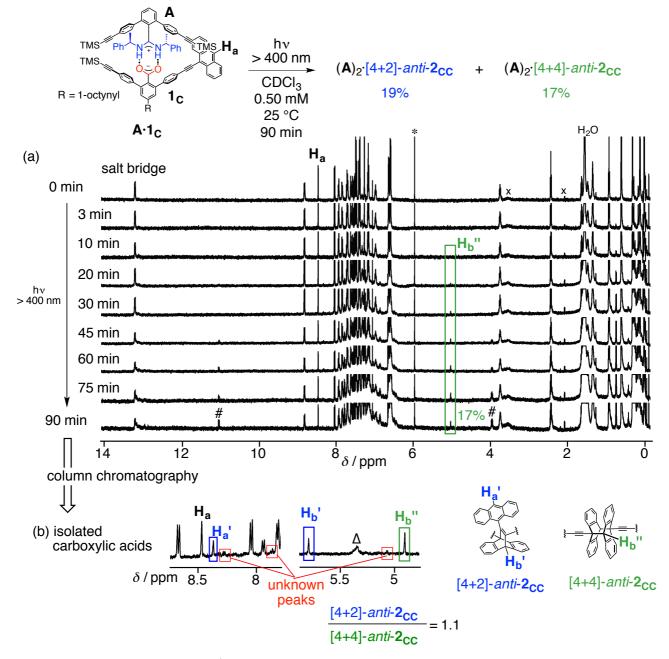


Fig. S20. Absorption spectrum of $\mathbf{1}_{C}$ (0.50 mM, black dotted line) in CDCl₃ and time-dependent absorption and CD spectral changes of $\mathbf{1}_{C}$ (0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) in undegassed CDCl₃ before (0 s) and after (120 s) irradiation of light (> 400 nm). Cell length = 0.1 mm.


10. Photoreaction of Mono-9-Phenylethynylanthracene-Bound Carboxylic Acid Monomer in

the Absence of Oxygen

10-1. Photoreaction of 1_C in Degassed CDCl₃

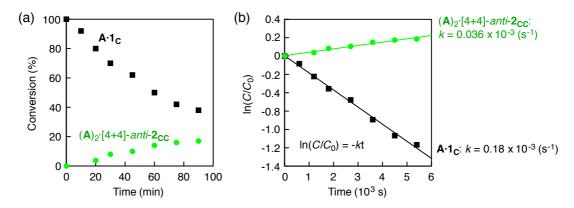
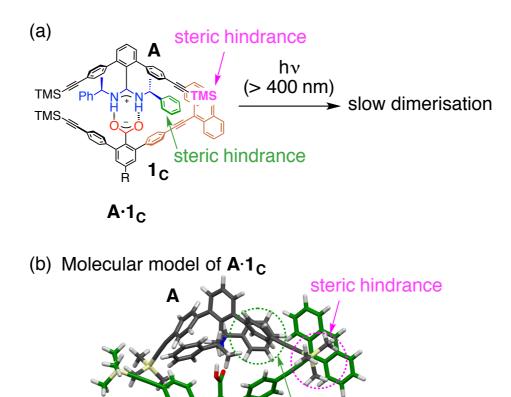


Fig. S21. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{C}$ (500 MHz, degassed CDCl₃, 25 °C, 0.50 mM) upon irradiation of light (> 400 nm). #, *, and x denote the ¹³C satellite peaks of the solvent, the peak of 1,1,2,2-tetrachloroethane (0.10 mM) used as an internal standard, and impurities contained in CDCl₃, respectively. (b) Time-dependent absorption spectral changes of $\mathbf{1}_{C}$ (0.50 mM) in degassed CDCl₃ before (0 min) and after (60 min) irradiation of light (> 400 nm). Cell length = 1 mm. (c) Time-conversion relationships and (d) kinetic plots of the photodimerisation of $\mathbf{1}_{C}$ (degassed CDCl₃, 25 °C, 0.50 mM) estimated from the integral ratios of the peaks for H_a ($\mathbf{1}_{C}$), H_b" ([4+4]-*anti*- $\mathbf{2}_{CC}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).



10-2. Photoreaction of 1_C in Degassed CDCl₃ in the Presence of Monomeric Amidine A

Fig. S22. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{C}$ (500 MHz, degassed CDCl₃, 25 °C, 0.50 mM) in the presence of **A** (0.50 mM) upon irradiation of light (> 400 nm). *, x, and # denote the peak of 1,1,2,2-tetrachloroethane (0.23 mM) used as an internal standard, impurities contained in CDCl₃, and hydrochloride salt of **A** (10% after 90 min), respectively. The peaks were assigned on the basis of the ¹H NMR spectra shown in *Fig. S27*. The peaks due to $(\mathbf{A})_2 \cdot [4+2]$ -*anti*- $\mathbf{2}_{CC}$ were too broad to estimate its yield. The yield of $(\mathbf{A})_2 \cdot [4+2]$ -*anti*- $\mathbf{2}_{CC}$ was estimated to be 19% based on the integral ratios of the peaks for isolated [4+4]-*anti*- $\mathbf{2}_{CC}$ and [4+2]-*anti*- $\mathbf{2}_{CC}$. (b) ¹H NMR spectrum (500 MHz, CDCl₃, 25 °C) of isolated carboxylic acid mixtures. The isolation procedure is described in the general procedure (3-3). Δ denotes the peak of impurities contained in eluent during evaporating the eluent.

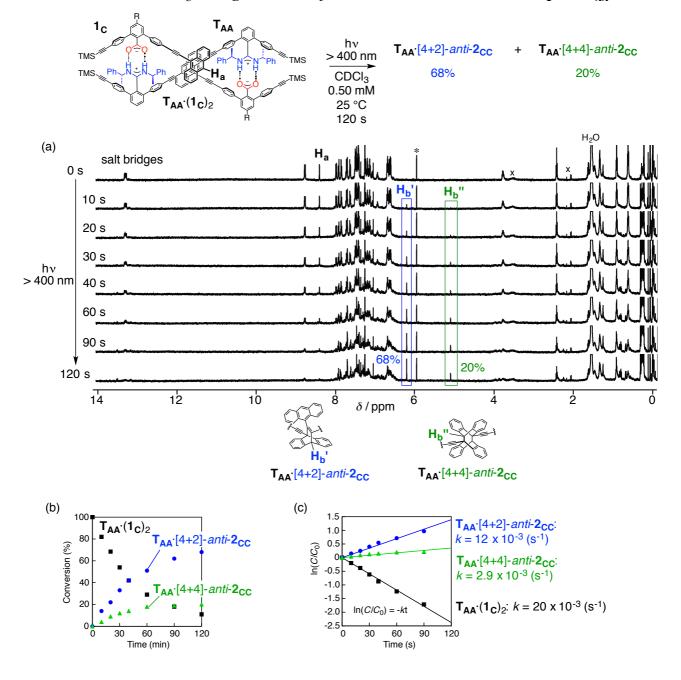
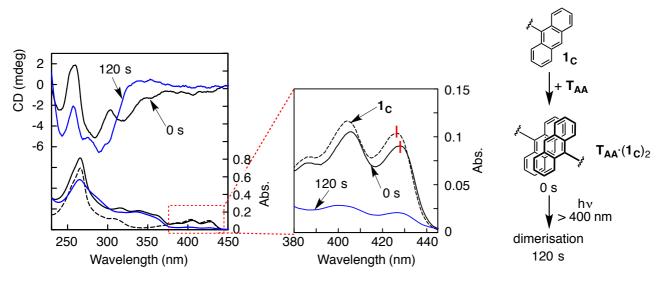

Fig. S23. (a) Time-conversion relationships and (b) kinetic plots of the photodimerisation of $\mathbf{1}_{c}$ (degassed CDCl₃, 25 °C, 0.50 mM) in the presence of **A** (0.50 mM) estimated from the integral ratios of the peaks for H_a (**A**·1_c), H_b '' ((**A**)₂·[4+4]-*anti*-2_{cc}), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in *Fig. S22a*.

Fig. S24. (a) Possible mechanism for slow photodimerisation of $\mathbf{1}_{C}$ (0.50 mM) in the presence of A (0.50 mM) in degassed CDCl₃ at 25 °C. (b) An optimised structure of $\mathbf{A} \cdot \mathbf{1}_{C}$ by molecular mechanics (MM) calculations. The molecular modelling and MM calculations of $\mathbf{A} \cdot \mathbf{1}_{C}$ were performed on a Windows 7 PC using the CompassII Force Field as implemented in the Materials Studio package (Version 8.0; Accelrys Inc.). The initial structure of $\mathbf{A} \cdot \mathbf{1}_{C}$, in which the 1-octynyl group was replaced with a hydrogen atom, was constructed based on the crystal structure of a double-helical dimer comprising complementary amidine and carboxylic acid dimers linked by the diacetylene residues bound together through salt bridges.^{S3}


1_C

steric hindrance

10-3. Photoreaction of 1_C in Degassed CDCl₃ in the Presence of Amidine Template T_{AA}

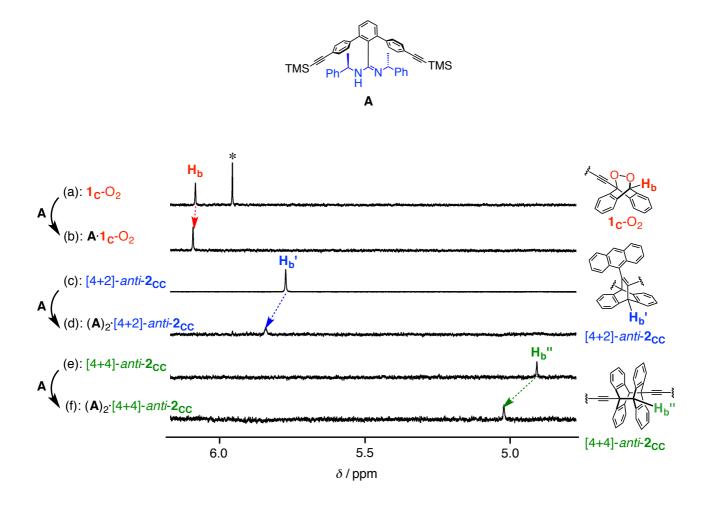
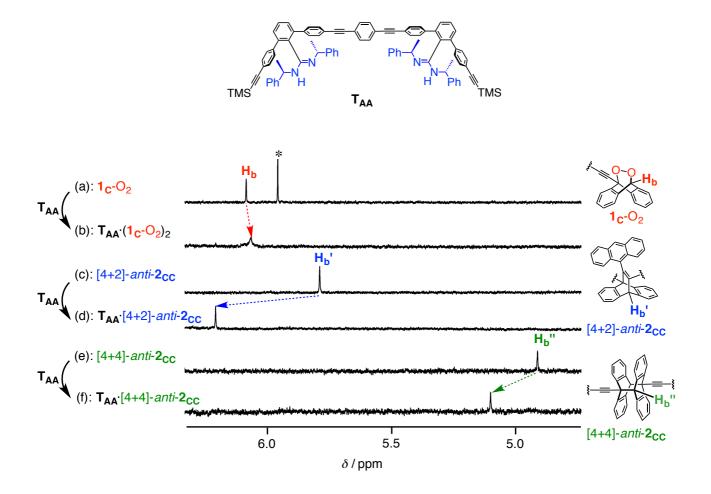

Fig. S25. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{1}_{C}$ (500 MHz, degassed CDCl₃, 25 °C, 0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) upon irradiation of light (> 400 nm). * and x denote the peak of 1,1,2,2-tetrachloroethane (0.15 mM) used as an internal standard and impurities contained in CDCl₃, respectively. The peaks were assigned on the basis of the ¹H NMR spectra shown in *Fig. S28.* (b) Time-conversion relationships and (c) kinetic plots of the photodimerisation of $\mathbf{1}_{C}$ (degassed CDCl₃, 25 °C, 0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) estimated from the integral ratios of the peaks for H_a (\mathbf{T}_{AA} ·($\mathbf{1}_{C}$)₂), H_b ' (\mathbf{T}_{AA} ·[4+2]-*anti*- $\mathbf{2}_{CC}$), H_b '' (\mathbf{T}_{AA} ·[4+4]-*anti*- $\mathbf{2}_{CC}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

Fig. S26. Absorption spectrum of $\mathbf{1}_{C}$ (0.50 mM, black dotted line) in CDCl₃ and time-dependent absorption and CD spectral changes of $\mathbf{1}_{C}$ (0.50 mM) in the presence of \mathbf{T}_{AA} (0.25mM) in degassed CDCl₃ before (0 s) and after (120 s) irradiation of light (> 400 nm). Cell length = 0.1 mm.


11. Identification of Photoreaction Products of Mono-9-Phenylethynylanthracene-Bound Carboxylic Acid Monomer

11-1. Photoreaction of $\mathbf{1}_{C}$ in Degassed and Undegassed CDCl_{3} in the Presence of Monomeric Amidine A

Fig. S27. ¹H NMR spectra (500 MHz, 25 °C) of (a) $\mathbf{1}_{C}$ -O₂ prepared in a undegassed CDCl₃ solution of $\mathbf{1}_{C}$ (0.50 mM) upon irradiation of light (> 400 nm) for 3 min (see **Fig. S16a**), (b) a mixture of the sample (a) and **A** (0.50 mM), (c) [4+2]-*anti*- $\mathbf{2}_{CC}$, (d) a mixture of [4+2]-*anti*- $\mathbf{2}_{CC}$ (0.50 mM) and **A** (1.0 mM), (e) [4+4]-*anti*- $\mathbf{2}_{CC}$, and (f) a mixture of [4+4]-*anti*- $\mathbf{2}_{CC}$ (0.20 mM) and **A** (0.40 mM). * denotes the peak of 1,1,2,2-tetrachloroethane used as an internal standard.

11-2. Photoreaction of 1_C in Degassed and Undegassed CDCl₃ in the Presence of Template T_{AA}

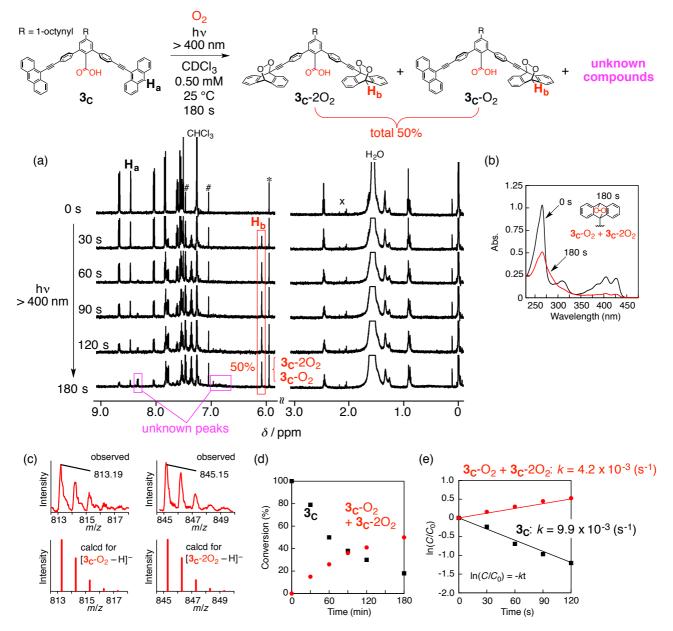
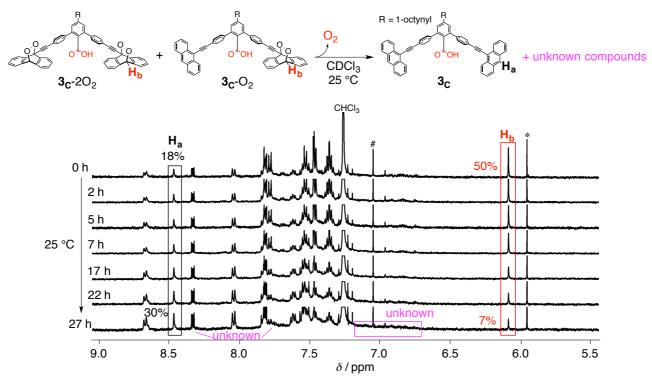


Fig. S28. ¹H NMR spectra (500 MHz, 25 °C) of (a) $\mathbf{1}_{C}$ -O₂ prepared in a undegassed CDCl₃ solution of $\mathbf{1}_{C}$ (0.50 mM) upon irradiation of light (> 400 nm) for 3 min (see **Fig. S16a**), (b) a mixture of the sample (a) and \mathbf{T}_{AA} (0.25 mM), (c) [4+2]-*anti*- $\mathbf{2}_{CC}$, (d) a mixture of [4+2]-*anti*- $\mathbf{2}_{CC}$ (0.20 mM) and \mathbf{T}_{AA} (0.36 mM), (e) [4+4]-*anti*- $\mathbf{2}_{CC}$, and (f) a mixture of [4+4]-*anti*- $\mathbf{2}_{CC}$ (0.20 mM) and \mathbf{T}_{AA} (0.20 mM). * denotes the peak of 1,1,2,2-tetrachloroethane used as an internal standard.


12. Photoreaction of Di-9-Phenylethynylanthracene-Bound Carboxylic Acid Monomer in the

Presence of Oxygen

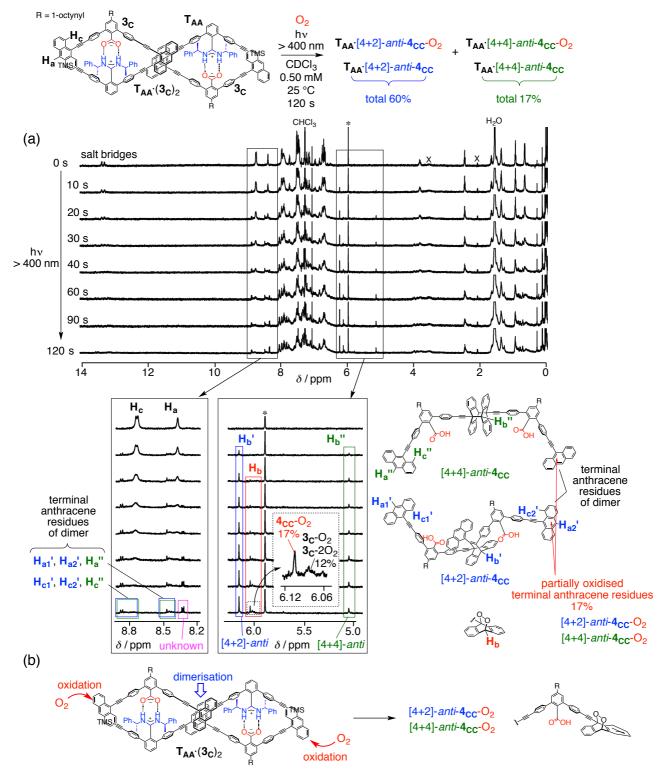

12-1. Photoreaction of 3_C in Undegassed CDCl₃

Fig. S29. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{3}_{C}$ (500 MHz, undegassed CDCl₃, 25 °C, 0.50 mM) upon irradiation of light (> 400 nm). #, *, and x denote the ¹³C satellite peaks of the solvent, the peak of 1,1,2,2-tetrachloroethane (0.10 mM) used as an internal standard, and impurities contained in CDCl₃, respectively. The unknown peaks are probably due to photolysis products of $\mathbf{3}_{C}$ -2O₂ and $\mathbf{3}_{C}$ -O₂. (b) Time-dependent absorption spectral changes of $\mathbf{3}_{C}$ (0.50 mM) in undegassed CDCl₃ before (0 s) and after (180 s) irradiation of light (> 400 nm). Cell length = 0.1 mm. (c) Negative mode ESI-MS spectrum (CH₃CN/CH₃OH = 1/1 (*v*/*v*)) of $\mathbf{3}_{C}$ after irradiation of light (> 400 nm) for 180 s in undegassed CDCl₃. (d) Time-conversion relationships and (e) kinetic plots of the photooxidation of $\mathbf{3}_{C}$ (undegassed CDCl₃, 25 °C, 0.50 mM) estimated from the integral ratios of the peaks for H_a ($\mathbf{3}_{C}$), H_b ($\mathbf{3}_{C}$ -2O₂ and $\mathbf{3}_{C}$ -O₂), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

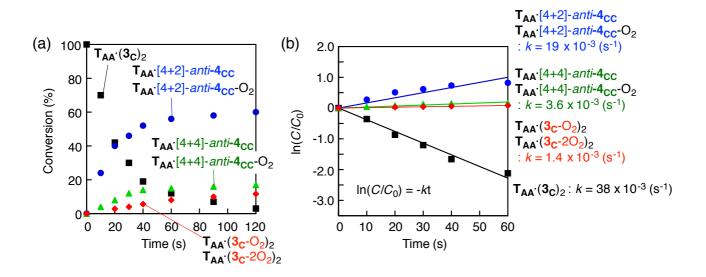


Fig. S30. Time-dependent ¹H NMR spectral changes of a mixture of $\mathbf{3}_{C}$ -2O₂ and $\mathbf{3}_{C}$ -O₂ under shielded light in CDCl₃ at 25 °C. # and * denote the ¹³C satellite peaks of the solvent and the peak of 1,1,2,2-tetrachloroethane (0.10 mM) used as an internal standard. The photooxidised mixture of $\mathbf{3}_{C}$ -2O₂ and $\mathbf{3}_{C}$ -O₂ was obtained in an undegassed CDCl₃ solution of $\mathbf{3}_{C}$ (0.50 mM) upon irradiation of light (> 400 nm) for 180 s (see *Fig. S29a*). The photooxidised $\mathbf{3}_{C}$ -2O₂ and $\mathbf{3}_{C}$ -O₂ were not stable and thermally decomposed back to the monomer $\mathbf{3}_{C}$ together with a small amount of an unkown compound.



12-2. Photoreaction of 3_C in Undegassed CDCl₃ in the Presence of Amidine Template T_{AA}

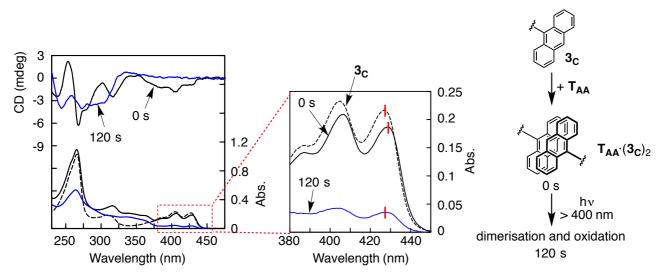

Fig. S31. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{3}_{C}$ (500 MHz, undegassed CDCl₃, 25 °C, 0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) upon irradiation of light (> 400 nm). * and **x** denote the peak of 1,1,2,2-tetrachloroethane (1.1 mM) used as an internal standard and impurities contained in CDCl₃. (b) Possible mechanism for oxidation of terminal anthracene residues of $\mathbf{3}_{C}$ (0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) in undegassed CDCl₃ at 25 °C. The peaks due to the complexes $\mathbf{T}_{AA} \cdot (\mathbf{3}_{C} - \mathbf{O}_{2})_{2}$ and $\mathbf{T}_{AA} \cdot (\mathbf{3}_{C} - \mathbf{2O}_{2})_{2}$ were assigned on the basis of the ¹H NMR spectra shown in *Fig. S33*.

Fig. S32. (a) Time-conversion relationships and (b) kinetic plots of the photodimerisation of $\mathbf{3}_{C}$ (undegassed CDCl₃, 25 °C, 0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) estimated from the integral ratios of the peaks for H_a (\mathbf{T}_{AA} ·($\mathbf{3}_{C}$)₂), H_b (\mathbf{T}_{AA} ·($\mathbf{3}_{C}$ -2O₂)₂ and \mathbf{T}_{AA} ·($\mathbf{3}_{C}$ -O₂)₂), H_b' (\mathbf{T}_{AA} ·[4+2]-*anti*- $\mathbf{4}_{CC}$ and \mathbf{T}_{AA} ·[4+2]-*anti*- $\mathbf{4}_{CC}$ -O₂), H_b'' (\mathbf{T}_{AA} ·[4+4]-*anti*- $\mathbf{4}_{CC}$ and \mathbf{T}_{AA} ·[4+4]-*anti*- $\mathbf{4}_{CC}$ -O₂), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in *Fig. S31a*.

Fig. S33. ¹H NMR spectra (500 MHz, 25 °C) of (a) a mixture of $\mathbf{3}_{C}$ - \mathbf{O}_{2} and $\mathbf{3}_{C}$ - $2\mathbf{O}_{2}$ prepared in a undegassed CDCl₃ solution of $\mathbf{3}_{C}$ (0.50 mM) upon irradiation of light (> 400 nm) for 3 min (see *Fig. S29a*) and (b) a mixture of the sample (a) and \mathbf{T}_{AA} (0.25 mM).

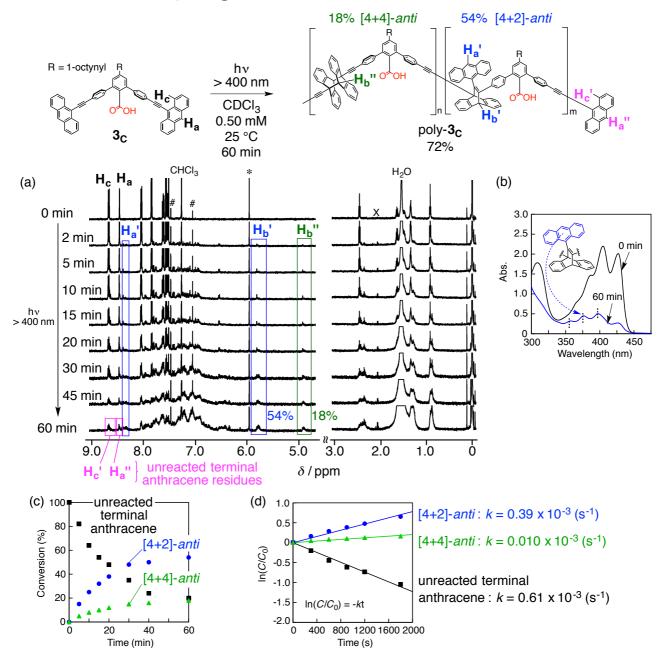
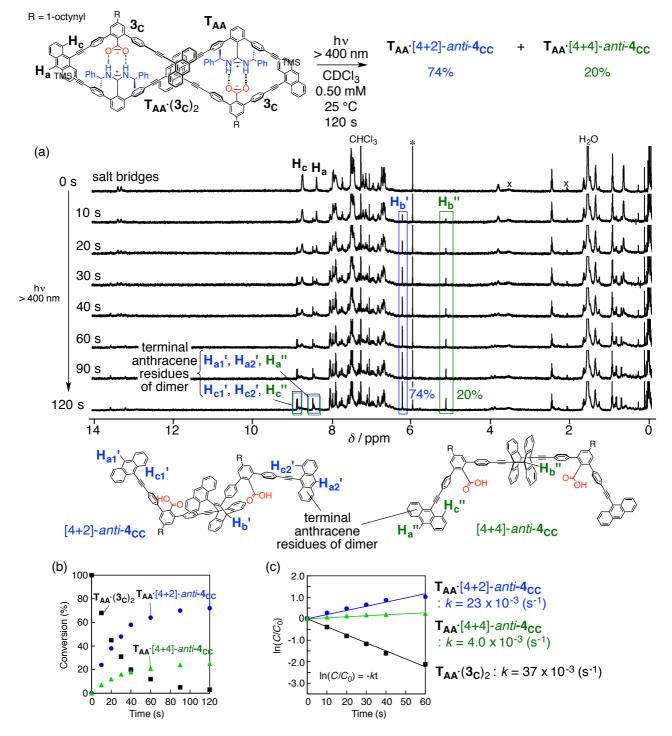


Fig. **S34.** Absorption spectrum of $\mathbf{3}_{C}$ (0.50 mM, black dotted line) in undegassed CDCl₃, and time-dependent absorption and CD spectral changes of $\mathbf{3}_{C}$ (0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) in undegassed CDCl₃ before (0 s) and after (120 s) irradiation of light (> 400 nm). Cell length = 0.1 mm.


13. Photoreaction of Di-9-Phenylethynylanthracene-Bound Carboxylic Acid Monomer in the

Absence of Oxygen

13-1. Photoreaction of 3_C in Degassed CDCl₃

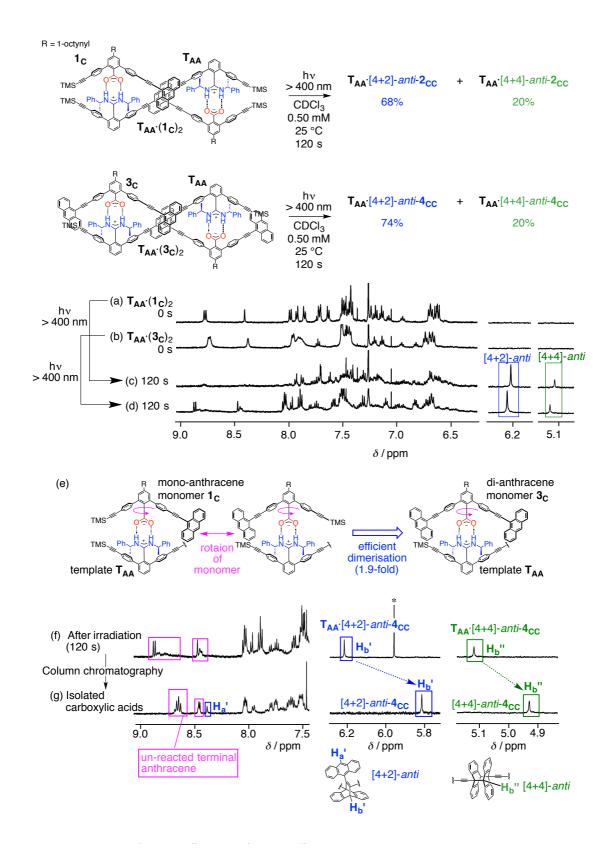
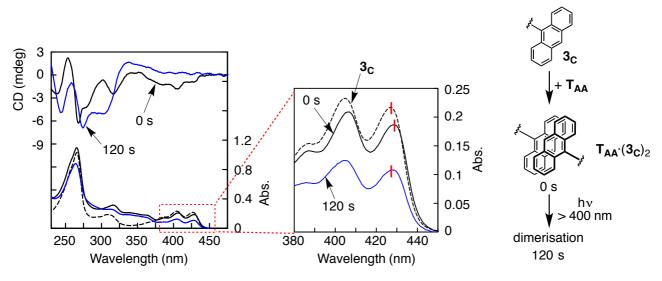


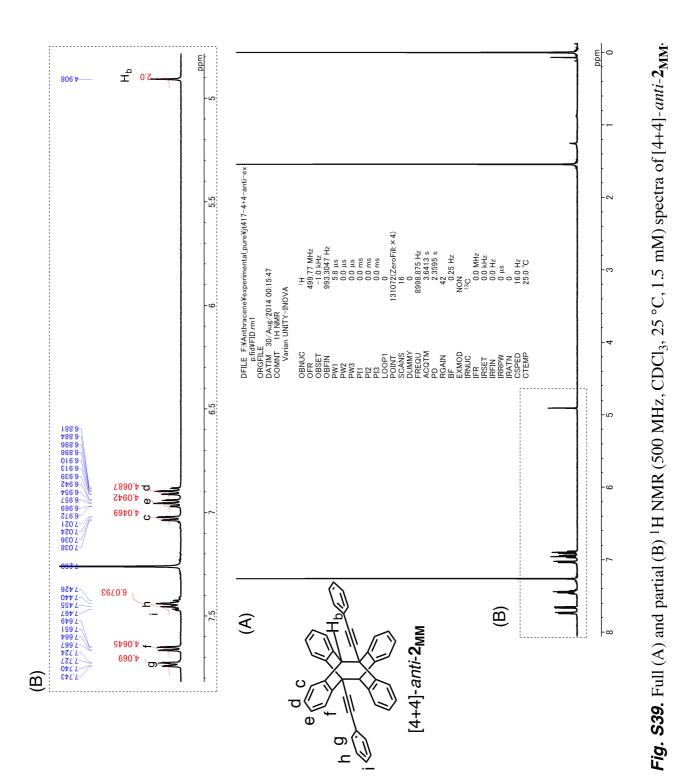
Fig. S35. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{3}_{C}$ (500 MHz, degassed CDCl₃, 25 °C, 0.50 mM) upon irradiation of light (> 400 nm). #, *, and x denote the ¹³C satellite peaks of the solvent, the peak of 1,1,2,2-tetrachloroethane (0.34 mM) used as an internal standard, and impurities contained in CDCl₃. (b) Time-dependent absorption spectral changes of $\mathbf{3}_{C}$ (0.50 mM) in degassed CDCl₃ before (0 min) and after (60 min) irradiation of light (> 400 nm). Cell length = 1 mm. (c) Time-conversion relationships and (d) kinetic plots of the photodimerisation of $\mathbf{3}_{C}$ (degassed CDCl₃, 25 °C, 0.50 mM) estimated from the integral ratios of the peaks for H_a and H_a^{**} (unreacted terminal anthracene), H_b^{*} ([4+2]-*anti*), H_b^{**} ([4+4]-*anti*), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

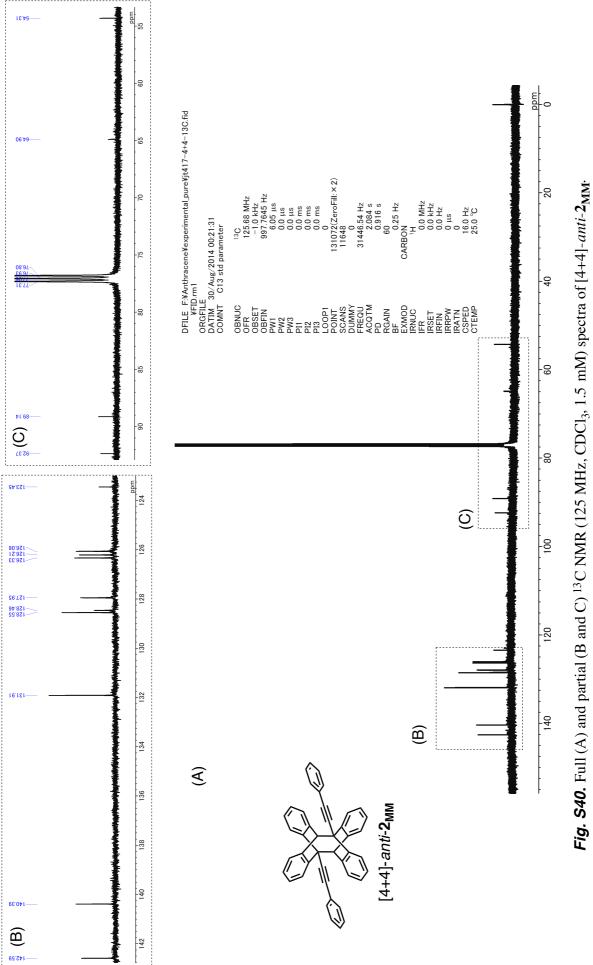


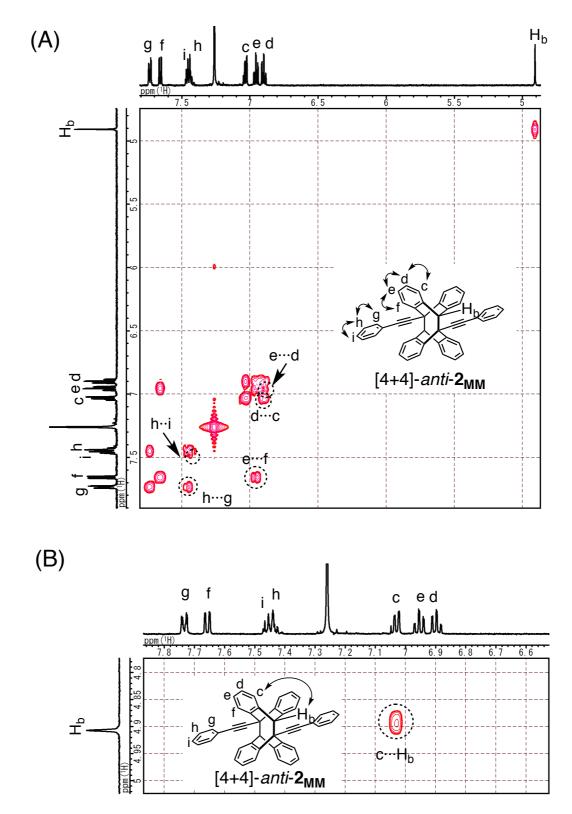
13-2. Photoreaction of $\mathbf{3}_{C}$ in Degassed CDCl3 in the Presence of Amidine Template T_{AA}

Fig. S36. (a) Time-dependent ¹H NMR spectral changes of $\mathbf{3}_{C}$ (500 MHz, degassed CDCl₃, 25 °C, 0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) upon irradiation of light (> 400 nm). * and x denote the peak of 1,1,2,2-tetrachloroethane (0.43 mM) used as an internal standard and impurities contained in CDCl₃. (b) Time-conversion relationships and (c) kinetic plots of the photodimerisation of $\mathbf{3}_{C}$ (degassed CDCl₃, 25 °C, 0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) estimated from the integral ratios of the peaks for \mathbf{H}_{a} (\mathbf{T}_{AA} ·($\mathbf{3}_{C}$)₂), \mathbf{H}_{b} ' (\mathbf{T}_{AA} ·[4+2]-*anti*- $\mathbf{4}_{CC}$), \mathbf{H}_{b} '' (\mathbf{T}_{AA} ·[4+4]-*anti*- $\mathbf{4}_{CC}$), and the internal standard (1,1,2,2-tetrachloroethane) based on the ¹H NMR spectral changes shown in (a).

Fig. S37. (a-d) Time-dependent ¹H NMR spectral changes of (a) $\mathbf{1}_{C}$ and (b) $\mathbf{3}_{C}$ (500 MHz, degassed CDCl₃, 25 °C, 0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) upon irradiation of light (> 400 nm) for 120 s (c and d), respectively. (e) Possible mechanism for fast photodimerisation of $\mathbf{3}_{C}$ (0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) in CDCl₃ at 25 °C. (f-g) ¹H NMR spectra (500 MHz, CDCl₃, 25 °C) of (f) $\mathbf{T}_{AA} \cdot (\mathbf{3}_{C})_2$ after irradiation of light (> 400 nm) for 120 s (see *Fig. S36a*) and (g) isolated carboxylic acid mixtures. The isolation procedure is described in the general procedure (3-4). * denotes the peak of 1,1,2,2-tetrachloroethane used as an internal standard.




Fig. S38. Absorption spectrum of $\mathbf{3}_{C}$ (0.50 mM, black dotted line) in CDCl₃, and time-dependent absorption and CD spectral changes of $\mathbf{3}_{C}$ (0.50 mM) in the presence of \mathbf{T}_{AA} (0.25 mM) in degassed CDCl₃ before (0 s) and after (120 s) irradiation of light (> 400 nm). Cell length = 0.1 mm.


14. Supporting References

- S1 C.-W. Wan, A. Burghart, J. Chen, F. Bergstrom, L. B.-Å. Johansson, M. F. Wolford, T. G. Kim, M. R. Topp, R. M. Hochstrasser and K. Burgess, *Chem. Eur. J.*, 2003, 9, 4430-4441.
- S2 T. Maeda, Y. Furusho, S.-i. Sakurai, J. Kumaki, K. Okoshi and E. Yashima, J. Am. Chem.
 Soc., 2008, 130, 7938-7945.
- S3 Y. Tanaka, H. Katagiri, Y. Furusho and E. Yashima, *Angew. Chem.*, *Int. Ed.*, 2005, 44, 3867-3870.
- S4 CrystalClear, Version 1.36; Molecular Structure Corporation: The Woodlands, TX, 2000 and Rigaku Corporation: Tokyo, Japan.
- M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C.
 Giacovazzo, G. Polidori and R. Spagna, J. Appl. Crystallogr., 2005, 38, 381-388
- S6 G. M. Sheldrick, SHELXL-97: Program for the Refinement of Crystal Structures; University of Göttingen, Göttingen, Germany, 1997.
- S7 G. M. Sheldrick, *Acta Crystallogr.*, 2008, A64, 112-122.
- S8 K. Wakita, *Yadokari-XG*, Program for Crystal Structure Analysis, 2000.
- S9 C. Kabuto, S. Akine and E. Kwon, J. Cryst. Soc. Jpn., 2009, **51**, 218-224.
- S10 M. Thompson, ArgusLab, Planaria Software LLC, Seattle, WA, 1996.
- S11 J. J. P. Stewart, *Mol. Model.*, 2007, **13**, 1173-1213.
- S12 J. J. P. Stewart, MOPAC2012, Stewart Computational Chemistry, Colorado Springs, CO, USA, http://openmopac.net/, 2012.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, A. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G.A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, D. J. *Gaussian 09* Gaussian, Inc., Wallingford CT, 2009.

15. Spectroscopic Data

Fig. S41. (A) gCOSY and (B) partial NOESY (mixing time = 500 ms) spectra of [4+4]-*anti*- 2_{MM} (500 MHz, CDCl₃, 25 °C, 2.4 mM).

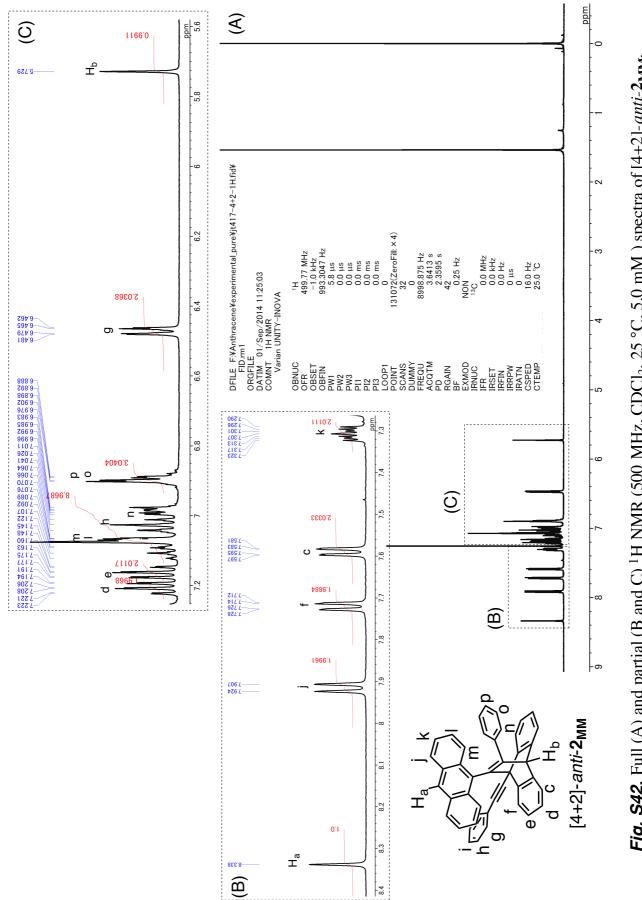
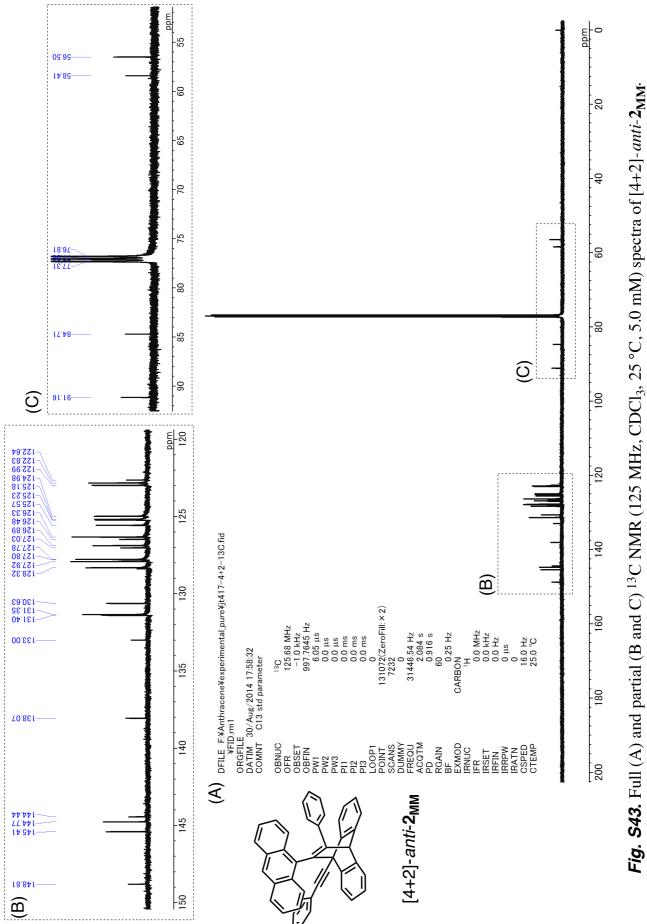
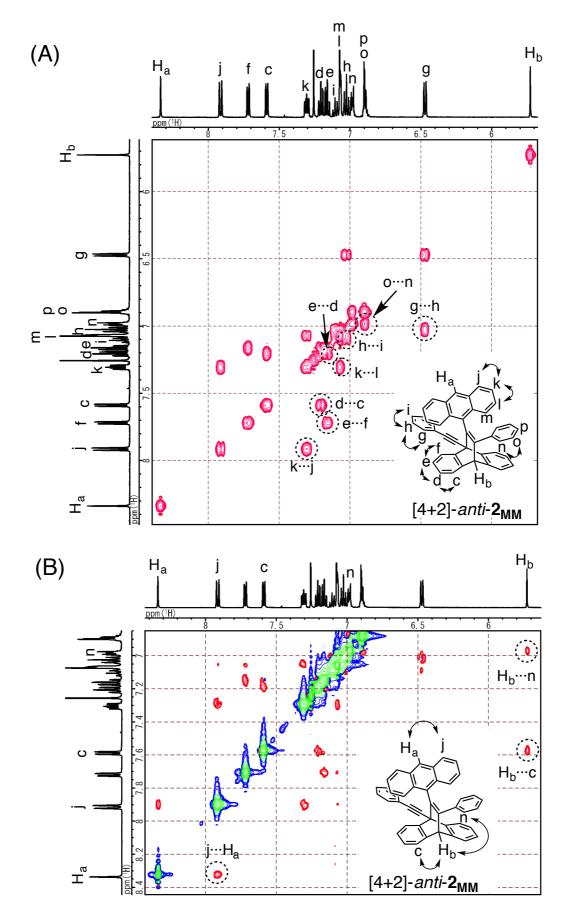
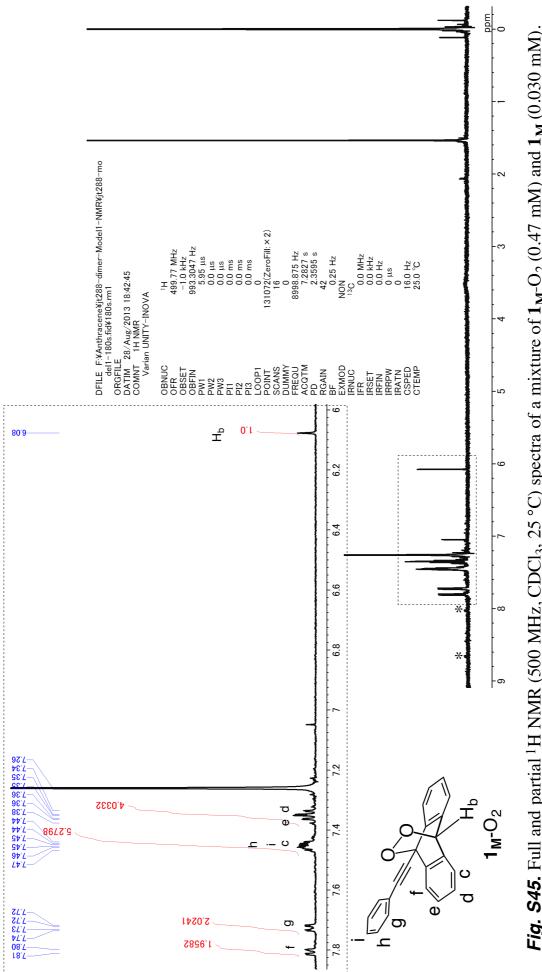
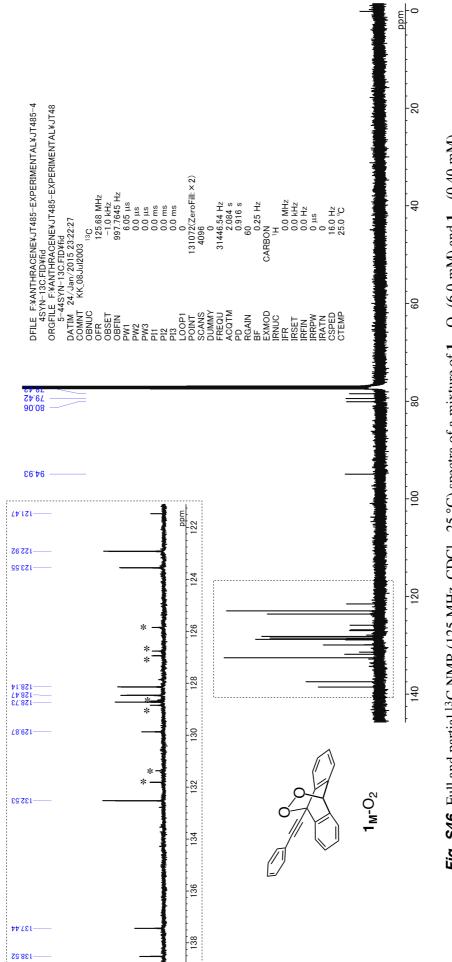
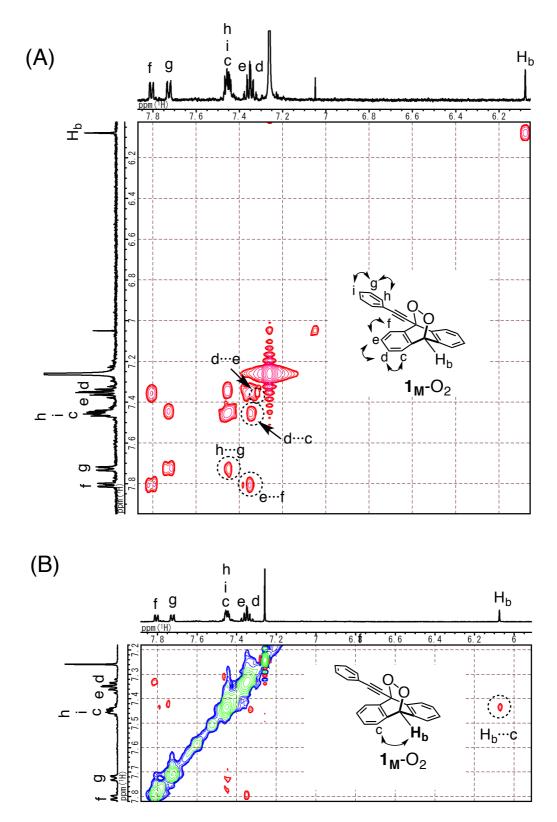
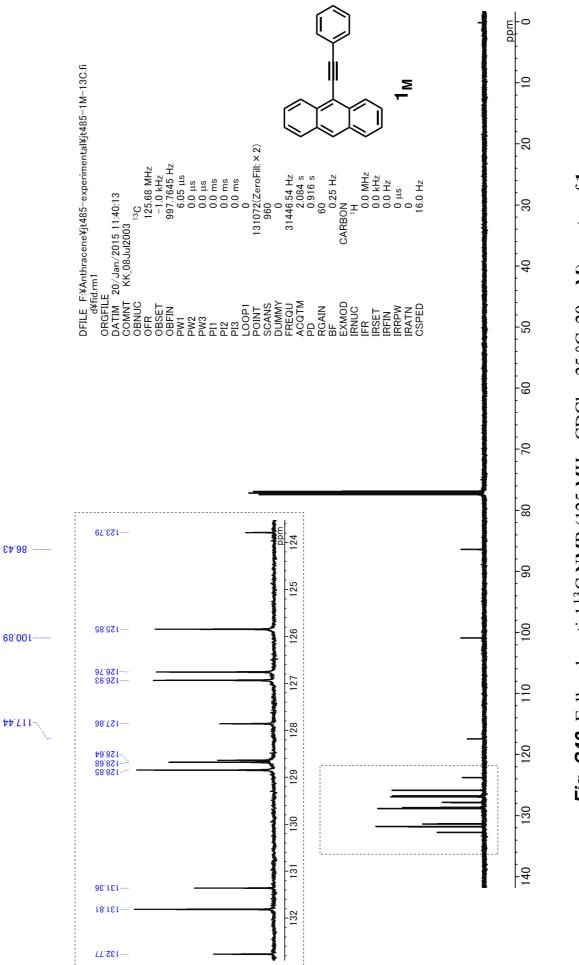
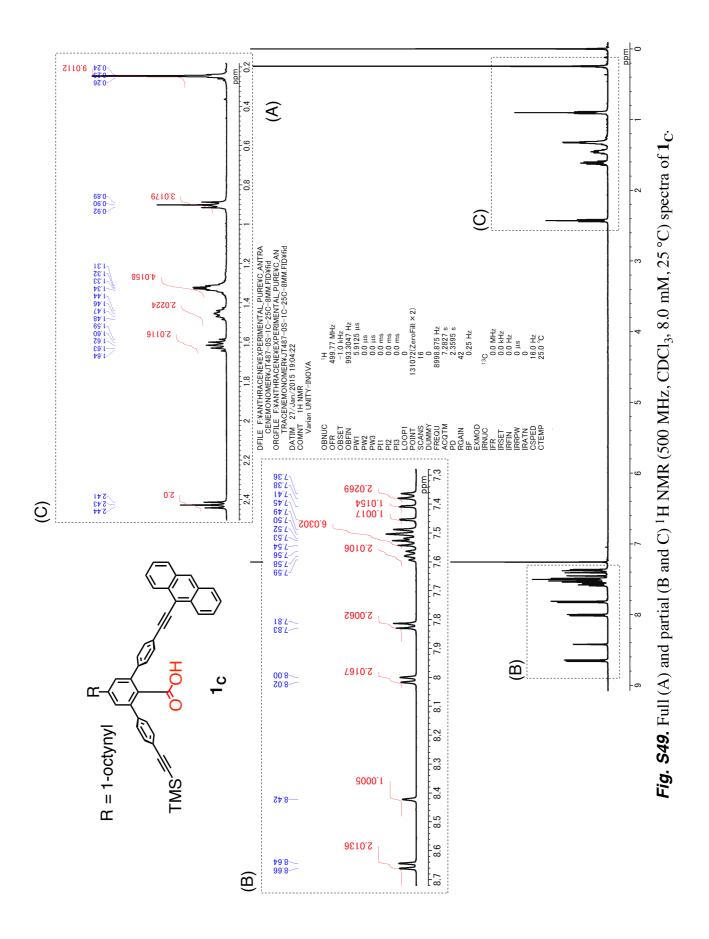





Fig. S42. Full (A) and partial (B and C) ¹H NMR (500 MHz, CDCl₃, 25 °C, 5.0 mM) spectra of [4+2]-*anti*-2_{MM}.




Fig. S44. (A) gCOSY and (B) partial NOESY (mixing time = 500 ms) spectra of [4+2]-anti- 2_{MM} (500 MHz, CDCl₃, 25 °C, 4.1 mM).





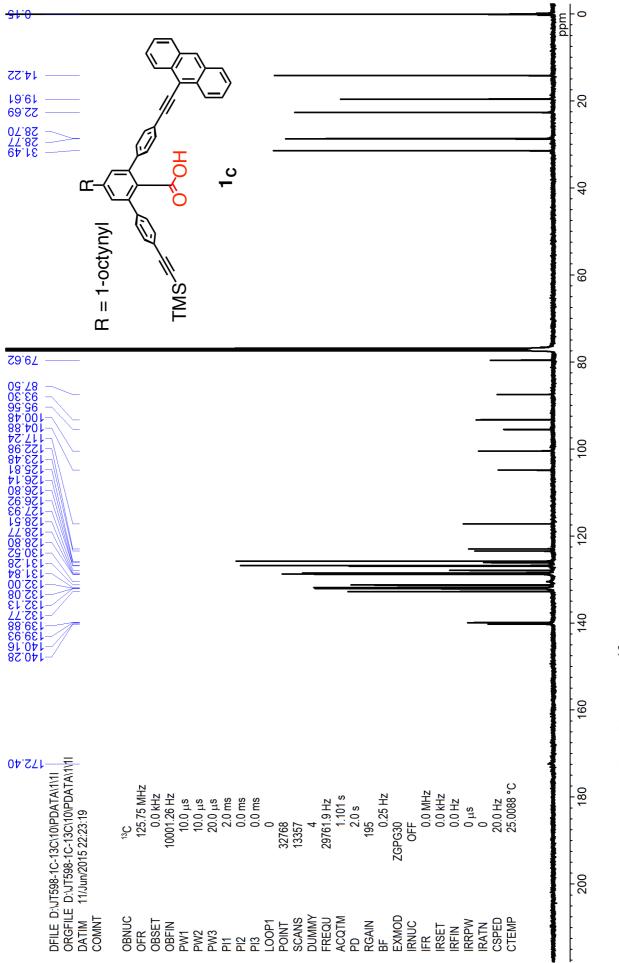
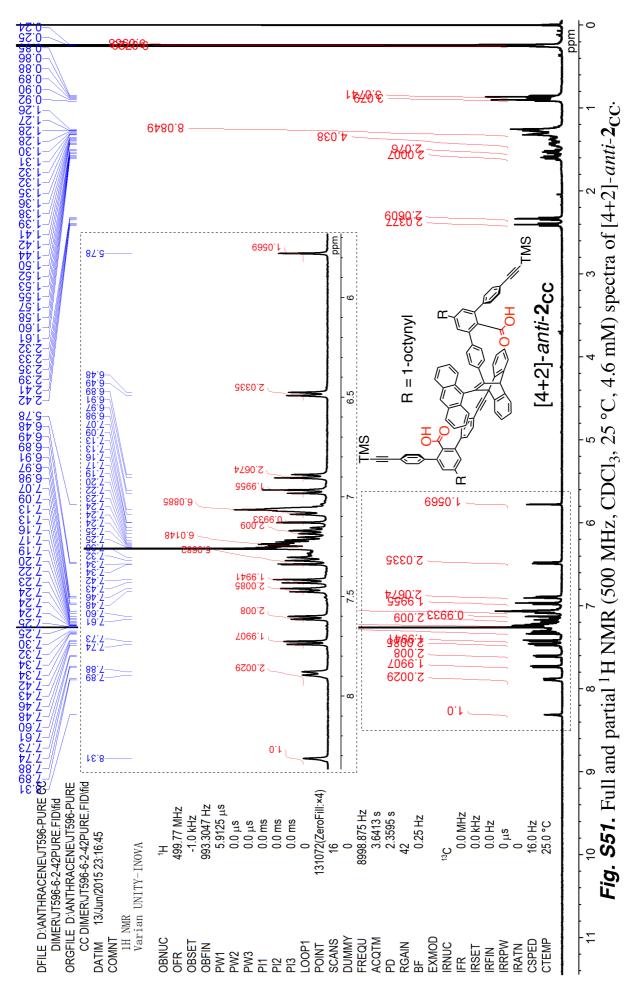
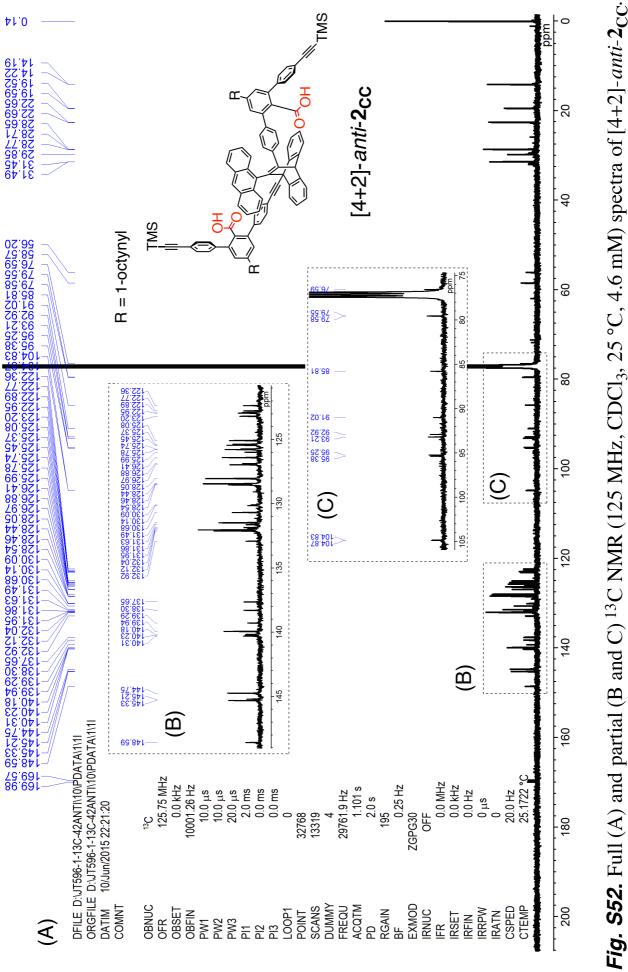
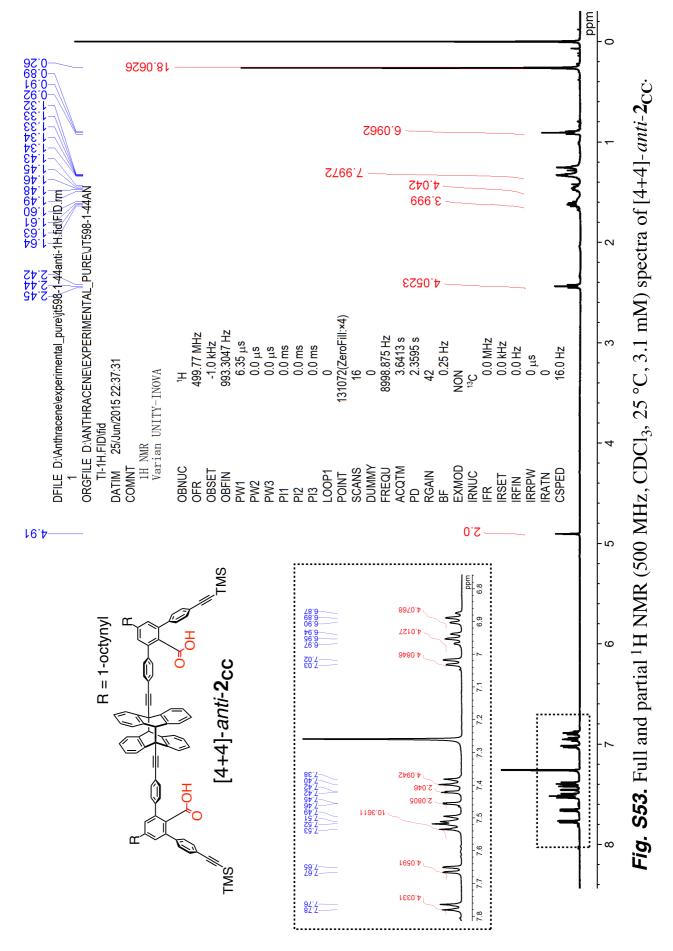
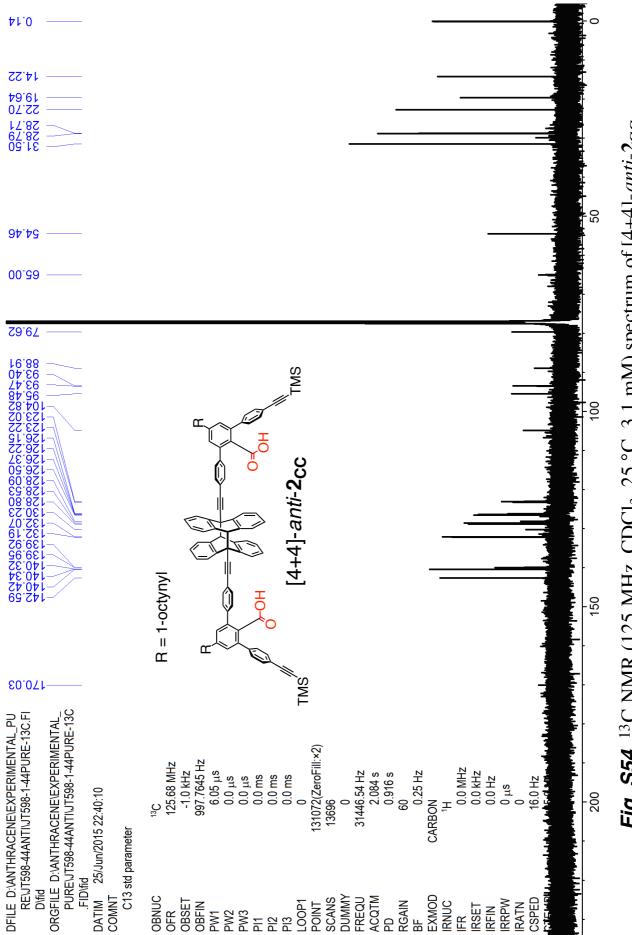


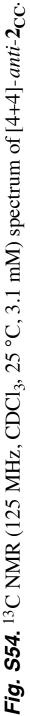
Fig. S47. (A) gCOSY spectrum of a mixture of $\mathbf{1}_{M}$ -O₂ (0.47 mM) and $\mathbf{1}_{M}$ (0.030 mM), and (B) partial NOESY (mixing time = 500 ms) spectrum of a mixture of $\mathbf{1}_{M}$ -O₂ (6.6 mM) and $\mathbf{1}_{M}$ (0.40 mM) in CDCl₃ at 25 °C.

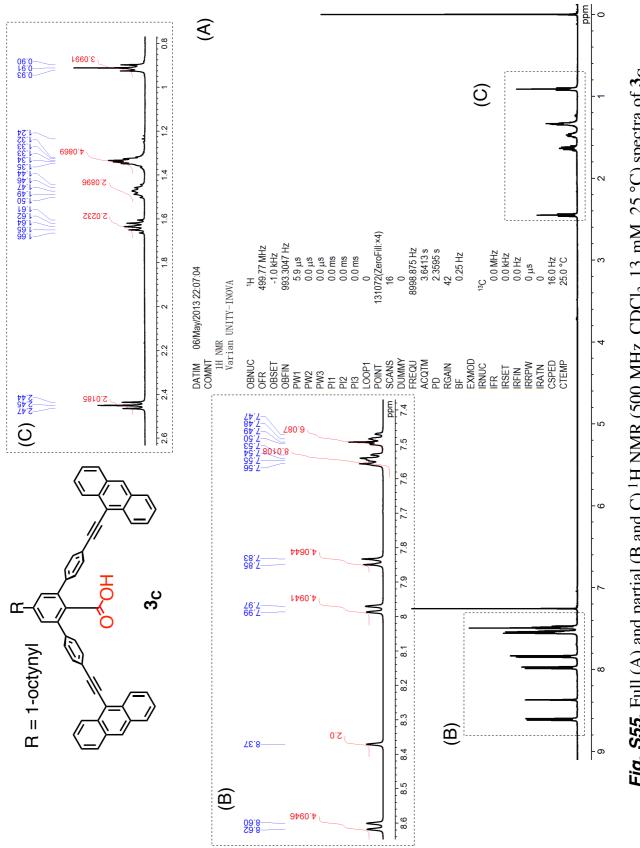


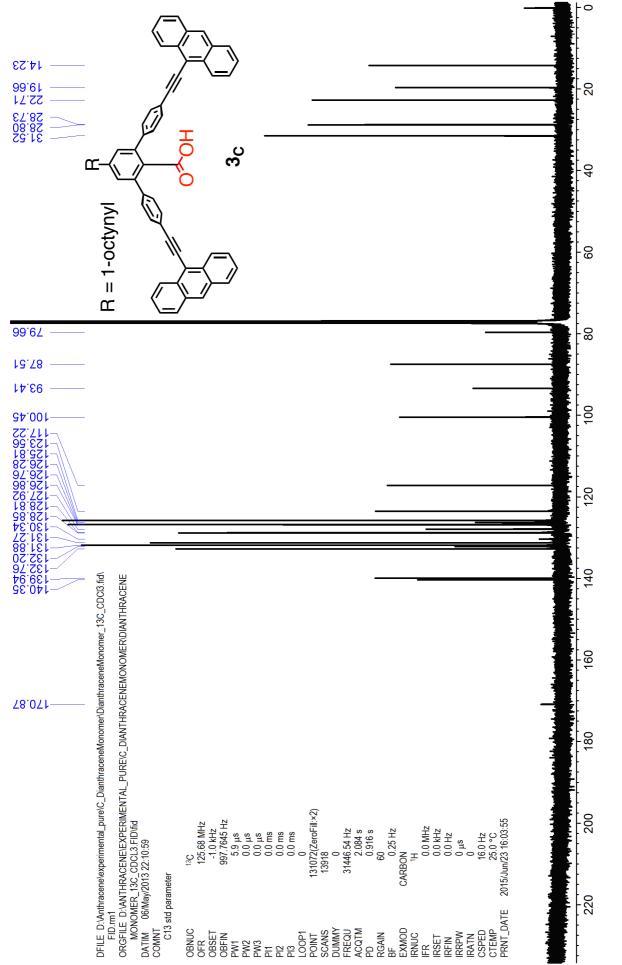


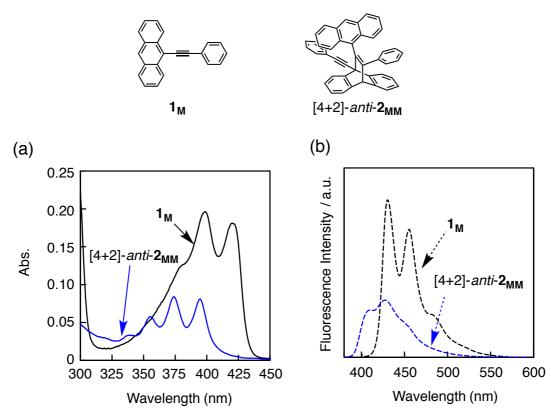


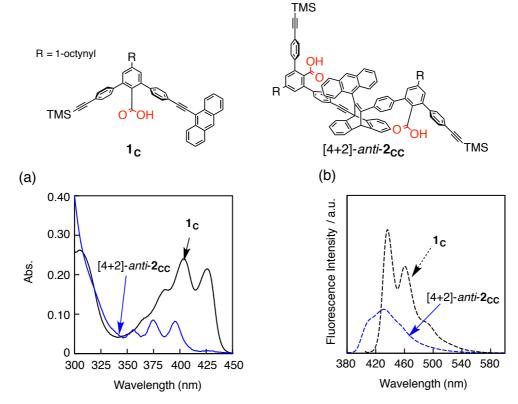





S59






S63

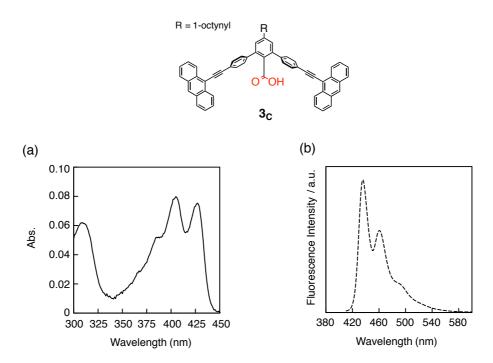


Fig. S57. (a) Absorption and (b) fluorescence spectra of $\mathbf{1}_{M}$ (12 μ M) and [4+2]-*anti*- $\mathbf{2}_{MM}$ (11 μ M) in CDCl₃ at ambient temperature. Excited wavelength: 399 nm ($\mathbf{1}_{M}$) and 374 nm ([4+2]-*anti*- $\mathbf{2}_{MM}$). Cell length = 1 cm.

Fig. S58. (a) Absorption and (b) fluorescence spectra of $\mathbf{1}_{C}$ (10 μ M) and [4+2]-*anti*- $\mathbf{2}_{MM}$ (10 μ M) in CDCl₃ at ambient temperature. Excited wavelength: 404 nm ($\mathbf{1}_{C}$) and 375 nm ([4+2]-*anti*- $\mathbf{2}_{CC}$). Cell length = 1 cm.

Fig. S59. (a) Absorption and (b) fluorescence spectra of $\mathbf{3}_{C}$ (3 μ M) in CDCl₃ at ambient temperature. Excited wavelength: 405 nm. Cell length = 1 cm.