Supporting Information

Copper-Catalyzed C-O Bond Cleavage and Cyclization: Synthesis of

Indazolo[3,2-b]quinazolinones

Rui Qiao,^a Leping Ye,^b Kun Hu,^a Shuling Yu,^a Weiguang Yang,^a Miaochang Liu,^a Jiuxi Chen,^{*a} Jinchang Ding^a and Huayue Wu^{*a}

^a College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.

^b The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, P. R. China.

Email: jiuxichen@wzu.edu.cn; huayuewu@wzu.edu.cn

Table of Contents

1. NMR Spectra for All Products	S1
2. X-ray Crystallographic Data for Product 2a	S18

Figure S1. ¹H NMR of 2a (500 MHz, CDCl₃) and ¹³C NMR of 2a (125 MHz, CDCl₃).

Figure S2. ¹H NMR of 2b (500 MHz, DMSO-*d*₆) and ¹³C NMR of 2b (125 MHz, CDCl₃).

Figure S3. ¹H NMR of 2c (500 MHz, CDCl₃) and ¹³C NMR of 2c (125 MHz, CDCl₃).

Figure S4. ¹H NMR of 2d (500 MHz, CDCl₃) and ¹³C NMR of 2d (125 MHz, CDCl₃).

Figure S5. ¹H NMR of 2e(500 MHz, CDCl₃) and ¹³C NMR of 2e (125 MHz, CDCl₃).

Figure S6. ¹H NMR of **2f** (500 MHz, DMSO-*d*₆) and ¹³C NMR of **2f** (125 MHz, DMSO-*d*₆).

Figure S7. ¹H NMR of 2g(500 MHz, CDCl₃) and ¹³C NMR of 2g(125 MHz, CDCl₃).

Figure S8. ¹H NMR of 2h (500 MHz, CDCl₃) and ¹³C NMR of 2h (125 MHz, CDCl₃).

Figure S9. ¹H NMR of 2i (500 MHz, CDCl₃) and ¹³C NMR of 2i(125 MHz, CDCl₃).

Figure S10. ¹H NMR of 2j (500 MHz, CDCl₃) and ¹³C NMR of 2j (125 MHz, CDCl₃).

Figure S11. ¹H NMR of 2k (500 MHz, CDCl₃) and ¹³C NMR of 2k (125 MHz, CDCl₃).

Figure S12. ¹H NMR of 2l (500 MHz, CDCl₃) and ¹³C NMR of 2l (125 MHz, CDCl₃).

Figure S13 ¹H NMR of 2m (500 MHz, CDCl₃) and ¹³C NMR of 2m (125 MHz, CDCl₃).

Figure S14. ¹H NMR of 2n (500 MHz, CDCl₃) and ¹³C NMR of 2n (125 MHz, CDCl₃).

Figure S15. ¹H NMR of 20 (500 MHz, CDCl₃) and ¹³C NMR of 20 (125 MHz, CDCl₃).

Figure S16. ¹H NMR of 2p (500 MHz, CDCl₃) and ¹³C NMR of 2p (125 MHz, CDCl₃).

Figure S17. ¹H NMR of 2q (500 MHz, CDCl₃) and ¹³C NMR of 2q (125 MHz, DMSO-*d*₆).

2. X-ray Crystallographic Data for Product 2a

Figure S18 X-ray crystal structure of 2a.

Table 1.	Crystal data and structure refinement for 1.
Identif	ication code 1

iuviiiiivuiioii vouv	-			
Empirical formula	C20 H13 N3 O			
Formula weight	ormula weight 311.33			
Temperature	100(2) K			
Wavelength	0.71073 A			
Crystal system, space group	Monoclinic, P 21/c			
Unit cell dimensions	a = 10.5528(10) A alpha = 90 deg.			
	b = 18.8340(17) A beta = 110.027(2) deg.			
	c = 8.0510(8) A gamma = 90 deg.			
Volume	1503.4(2) A^3			
Z, Calculated density	4, 1.376 Mg/m^3			
Absorption coefficient	0.088 mm^-1			
F(000)	648			
Crystal size	0.31 x 0.25 x 0.22 mm			
Theta range for data collection	2.05 to 25.99 deg.			
Limiting indices	-13<=h<=13, -23<=k<=23, -9<=l<=9			
Reflections collected / unique	11852 / 2942 [R(int) = 0.0208]			
Completeness to theta = 25.99	99.8 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.9810 and 0.9733			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	2942 / 0 / 217			
Goodness-of-fit on F^2	1.054			
Final R indices [I>2sigma(I)]	R1 = 0.0349, $wR2 = 0.0969$			
R indices (all data)	R1 = 0.0389, w $R2 = 0.0996$			
Largest diff. peak and hole	0.198 and -0.270 e.A^-3			

Table 2. Atomic coordinates ($x\;10^{4}$) and equivalent isotropic

displacement parameters (A² x 10³) for 1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
O(1)	4668(1)	3016(1)	6847(1)	24(1)
N(1)	1723(1)	2149(1)	8543(1)	21(1)
N(2)	3687(1)	2073(1)	7726(1)	19(1)
N(3)	4435(1)	1541(1)	7244(1)	21(1)
C(1)	2813(1)	3951(1)	7688(2)	26(1)
C(2)	1888(1)	4362(1)	8108(2)	30(1)
C(3)	935(1)	4037(1)	8714(2)	29(1)
C(4)	896(1)	3312(1)	8868(2)	25(1)
C(5)	1826(1)	2879(1)	8427(2)	21(1)
C(6)	2807(1)	3209(1)	7867(2)	20(1)
C(7)	3807(1)	2792(1)	7414(2)	20(1)
C(8)	2641(1)	1782(1)	8187(1)	19(1)
C(9)	2794(1)	1023(1)	8120(2)	21(1)
C(10)	2066(1)	459(1)	8476(2)	26(1)
C(11)	2505(1)	-224(1)	8340(2)	29(1)
C(12)	3638(1)	-343(1)	7849(2)	29(1)
C(13)	4348(1)	212(1)	7456(2)	25(1)
C(14)	3902(1)	898(1)	7597(2)	21(1)
C(15)	5878(1)	1625(1)	7762(2)	22(1)
C(16)	6486(1)	1363(1)	6611(2)	30(1)
C(17)	7881(2)	1392(1)	7102(2)	38(1)
C(18)	8650(1)	1692(1)	8697(2)	37(1)
C(19)	8021(1)	1971(1)	9809(2)	31(1)
C(20)	6629(1)	1935(1)	9358(2)	24(1)

Table 3. Bond lengths [A] and angles [deg] for 1.

O(1)-C(7)	1.2234(14)
N(1)-C(8)	1.2983(15)
N(1)-C(5)	1.3864(16)
N(2)-C(7)	1.3912(15)
N(2)-C(8)	1.3913(14)

N(2)-N(3)	1.4096(13)
N(3)-C(14)	1.4040(15)
N(3)-C(15)	1.4430(15)
C(1)-C(2)	1.3766(18)
C(1)-C(6)	1.4043(17)
С(1)-Н(1)	0.9300
C(2)-C(3)	1.4002(19)
С(2)-Н(2)	0.9300
C(3)-C(4)	1.3738(18)
С(3)-Н(3)	0.9300
C(4)-C(5)	1.4103(16)
C(4)-H(4)	0.9300
C(5)-C(6)	1.4080(16)
C(6)-C(7)	1.4588(16)
C(8)-C(9)	1.4416(16)
C(9)-C(14)	1.3925(16)
C(9)-C(10)	1.3980(16)
C(10)-C(11)	1.3830(18)
С(10)-Н(10)	0.9300
C(11)-C(12)	1.3995(19)
С(11)-Н(11)	0.9300
C(12)-C(13)	1.3846(18)
С(12)-Н(12)	0.9300
C(13)-C(14)	1.3936(16)
С(13)-Н(13)	0.9300
C(15)-C(20)	1.3865(18)
C(15)-C(16)	1.3867(17)
C(16)-C(17)	1.388(2)
C(16)-H(16)	0.9300

C(17)-C(18)	1.383(2)
С(17)-Н(17)	0.9300
C(18)-C(19)	1.388(2)
C(18)-H(18)	0.9300
C(19)-C(20)	1.3890(17)
С(19)-Н(19)	0.9300
C(20)-H(20)	0.9300
C(8)-N(1)-C(5)	115.55(10)
C(7)-N(2)-C(8)	124.12(9)
C(7)-N(2)-N(3)	123.18(9)
C(8)-N(2)-N(3)	111.38(9)
C(14)-N(3)-N(2)	104.84(9)
C(14)-N(3)-C(15)	119.45(9)
N(2)-N(3)-C(15)	118.51(9)
C(2)-C(1)-C(6)	120.42(12)
C(2)-C(1)-H(1)	119.8
C(6)-C(1)-H(1)	119.8
C(1)-C(2)-C(3)	119.57(12)
C(1)-C(2)-H(2)	120.2
C(3)-C(2)-H(2)	120.2
C(4)-C(3)-C(2)	120.93(11)
C(4)-C(3)-H(3)	119.5
C(2)-C(3)-H(3)	119.5
C(3)-C(4)-C(5)	120.43(12)
C(3)-C(4)-H(4)	119.8
C(5)-C(4)-H(4)	119.8
N(1)-C(5)-C(6)	122.86(10)
N(1)-C(5)-C(4)	118.63(10)
C(6)-C(5)-C(4)	118.51(11)

C(1)-C(6)-C(5)	120.10(11)
C(1)-C(6)-C(7)	118.76(11)
C(5)-C(6)-C(7)	121.12(11)
O(1)-C(7)-N(2)	121.95(10)
O(1)-C(7)-C(6)	126.90(11)
N(2)-C(7)-C(6)	111.15(10)
N(1)-C(8)-N(2)	124.74(11)
N(1)-C(8)-C(9)	129.54(10)
N(2)-C(8)-C(9)	105.69(9)
C(14)-C(9)-C(10)	120.72(11)
C(14)-C(9)-C(8)	107.20(10)
C(10)-C(9)-C(8)	132.08(11)
C(11)-C(10)-C(9)	117.91(12)
С(11)-С(10)-Н(10)	121.0
С(9)-С(10)-Н(10)	121.0
C(10)-C(11)-C(12)	120.92(12)
С(10)-С(11)-Н(11)	119.5
С(12)-С(11)-Н(11)	119.5
C(13)-C(12)-C(11)	121.61(12)
С(13)-С(12)-Н(12)	119.2
С(11)-С(12)-Н(12)	119.2
C(12)-C(13)-C(14)	117.27(11)
С(12)-С(13)-Н(13)	121.4
С(14)-С(13)-Н(13)	121.4
C(9)-C(14)-C(13)	121.55(11)
C(9)-C(14)-N(3)	110.56(10)
C(13)-C(14)-N(3)	127.89(11)
C(20)-C(15)-C(16)	121.38(12)
C(20)-C(15)-N(3)	121.75(10)

C(16)-C(15)-N(3)	116.86(11)
C(15)-C(16)-C(17)	118.94(13)
C(15)-C(16)-H(16)	120.5
С(17)-С(16)-Н(16)	120.5
C(18)-C(17)-C(16)	120.56(12)
С(18)-С(17)-Н(17)	119.7
С(16)-С(17)-Н(17)	119.7
C(17)-C(18)-C(19)	119.71(12)
C(17)-C(18)-H(18)	120.1
C(19)-C(18)-H(18)	120.1
C(18)-C(19)-C(20)	120.62(13)
С(18)-С(19)-Н(19)	119.7
С(20)-С(19)-Н(19)	119.7
C(15)-C(20)-C(19)	118.75(12)
С(15)-С(20)-Н(20)	120.6
С(19)-С(20)-Н(20)	120.6

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(A^2 \times 10^3)$ for 1.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U	13	U12
O(1)	23(1)	23(1)	29(1)	5(1)	12(1)	-1(1)	
N(1)	19(1)	22(1)	23(1)	0(1)	7(1)	-1(1)	
N(2)	18(1)	17(1)	21(1)	0(1)	8(1)	1(1)	
N(3)	22(1)	17(1)	24(1)	-1(1)	10(1)	2(1)	
C(1)	25(1)	22(1)	27(1)	1(1)	5(1)	-1(1)	

C(2)	32(1)	20(1)	33(1)	-2(1)	4(1)	4(1)
C(3)	25(1)	29(1)	28(1)	-5(1)	5(1)	8(1)
C(4)	20(1)	30(1)	24(1)	-3(1)	5(1)	2(1)
C(5)	18(1)	22(1)	19(1)	-1(1)	3(1)	1(1)
C(6)	19(1)	21(1)	19(1)	0(1)	3(1)	1(1)
C(7)	19(1)	19(1)	19(1)	2(1)	4(1)	-1(1)
C(8)	18(1)	21(1)	18(1)	0(1)	4(1)	-2(1)
C(9)	20(1)	20(1)	20(1)	0(1)	4(1)	-2(1)
C(10)	22(1)	24(1)	28(1)	2(1)	6(1)	-5(1)
C(11)	29(1)	21(1)	32(1)	2(1)	5(1)	-7(1)
C(12)	33(1)	18(1)	31(1)	-1(1)	4(1)	1(1)
C(13)	26(1)	22(1)	27(1)	-2(1)	7(1)	2(1)
C(14)	21(1)	20(1)	19(1)	0(1)	4(1)	-2(1)
C(15)	22(1)	17(1)	30(1)	5(1)	13(1)	3(1)
C(16)	38(1)	22(1)	38(1)	0(1)	24(1)	1(1)
C(17)	42(1)	22(1)	66(1)	3(1)	40(1)	4(1)
C(18)	23(1)	21(1)	74(1)	8(1)	25(1)	2(1)
C(19)	23(1)	22(1)	47(1)	5(1)	9(1)	1(1)
C(20)	22(1)	20(1)	30(1)	4(1)	11(1)	3(1)

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for 1.

	X	у	Z	U(eq)
H(1)	3447	4165	7283	31
H(2)	1896	4853	7989	36
H(3)	320	4316	9017	34
H(4)	253	3104	9265	30
H(10)	1311	539	8795	31
H(11)	2041	-608	8577	35

H(12)	3920	-807	7785	35
H(13)	5091	130	7112	30
H(16)	5968	1170	5527	36
H(17)	8302	1209	6351	45
H(18)	9584	1706	9023	45
H(19)	8537	2185	10866	38
H(20)	6209	2115	10112	28

Table 6. Torsion angles [deg] for 1.

C(7)-N(2)-N(3)-C(14)	-173.27(10)
C(8)-N(2)-N(3)-C(14)	-5.94(11)
C(7)-N(2)-N(3)-C(15)	50.45(14)
C(8)-N(2)-N(3)-C(15)	-142.22(10)
C(6)-C(1)-C(2)-C(3)	-0.10(18)
C(1)-C(2)-C(3)-C(4)	-1.09(18)
C(2)-C(3)-C(4)-C(5)	0.42(18)
C(8)-N(1)-C(5)-C(6)	3.41(15)
C(8)-N(1)-C(5)-C(4)	-177.37(10)
C(3)-C(4)-C(5)-N(1)	-177.84(11)
C(3)-C(4)-C(5)-C(6)	1.41(17)
C(2)-C(1)-C(6)-C(5)	1.95(17)
C(2)-C(1)-C(6)-C(7)	-179.79(11)
N(1)-C(5)-C(6)-C(1)	176.64(10)
C(4)-C(5)-C(6)-C(1)	-2.58(16)
N(1)-C(5)-C(6)-C(7)	-1.58(16)
C(4)-C(5)-C(6)-C(7)	179.21(10)
C(8)-N(2)-C(7)-O(1)	-172.82(10)
N(3)-N(2)-C(7)-O(1)	-7.10(16)

N(3)-N(2)-C(7)-C(6)	173.52(9)
C(1)-C(6)-C(7)-O(1)	-1.42(17)
C(5)-C(6)-C(7)-O(1)	176.82(11)
C(1)-C(6)-C(7)-N(2)	177.92(10)
C(5)-C(6)-C(7)-N(2)	-3.85(14)
C(5)-N(1)-C(8)-N(2)	0.50(16)
C(5)-N(1)-C(8)-C(9)	-177.36(11)
C(7)-N(2)-C(8)-N(1)	-6.74(17)
N(3)-N(2)-C(8)-N(1)	-173.93(10)
C(7)-N(2)-C(8)-C(9)	171.54(10)
N(3)-N(2)-C(8)-C(9)	4.35(12)
N(1)-C(8)-C(9)-C(14)	177.21(11)
N(2)-C(8)-C(9)-C(14)	-0.96(12)
N(1)-C(8)-C(9)-C(10)	-3.1(2)
N(2)-C(8)-C(9)-C(10)	178.71(12)
C(14)-C(9)-C(10)-C(11)	1.75(17)
C(8)-C(9)-C(10)-C(11)	-177.88(12)
C(9)-C(10)-C(11)-C(12)	-0.40(18)
C(10)-C(11)-C(12)-C(13)	-1.0(2)
C(11)-C(12)-C(13)-C(14)	1.01(18)
C(10)-C(9)-C(14)-C(13)	-1.77(18)
C(8)-C(9)-C(14)-C(13)	177.95(10)
C(10)-C(9)-C(14)-N(3)	177.54(10)
C(8)-C(9)-C(14)-N(3)	-2.74(13)
C(12)-C(13)-C(14)-C(9)	0.36(18)
C(12)-C(13)-C(14)-N(3)	-178.82(11)
N(2)-N(3)-C(14)-C(9)	5.24(12)
C(15)-N(3)-C(14)-C(9)	141.02(10)

7.81(14)

C(8)-N(2)-C(7)-C(6)

N(2)-N(3)-C(14)-C(13)	-175.50(11)
C(15)-N(3)-C(14)-C(13)	-39.72(17)
C(14)-N(3)-C(15)-C(20)	-94.51(13)
N(2)-N(3)-C(15)-C(20)	35.39(15)
C(14)-N(3)-C(15)-C(16)	83.73(13)
N(2)-N(3)-C(15)-C(16)	-146.37(10)
C(20)-C(15)-C(16)-C(17)	2.13(18)
N(3)-C(15)-C(16)-C(17)	-176.11(11)
C(15)-C(16)-C(17)-C(18)	-1.36(19)
C(16)-C(17)-C(18)-C(19)	-0.6(2)
C(17)-C(18)-C(19)-C(20)	1.8(2)
C(16)-C(15)-C(20)-C(19)	-0.92(18)
N(3)-C(15)-C(20)-C(19)	177.24(10)
C(18)-C(19)-C(20)-C(15)	-1.08(18)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 1 [A and deg.].

D-H...A

d(D-H)

d(H...A) d(D...A)

<(DHA)