Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

for

Glyco-functionalized dinuclear rhenium(I) complexes for cell imaging.

Alessandro Palmioli,^{a,e} Alessandro Aliprandi,^b Dedy Septiadi,^b Matteo Mauro^{*b}, Anna Bernardi,^a Luisa De Cola^b, Monica Panigati,^{*a,c,d}

^{a.} Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano (Italy). Fax: +39 0250314405; Tel: +30 0250314352; E-mail: monica.panigati@unimi.it

^{b.} ISIS & icFRC, Université de Strasbourg & CNRS, 8 rue Gaspard Monge, 67000 Strasbourg, France; e-mail: mauro@unistra.fr.

^{c.} Milan Unit of INSTM, Via Golgi 19, 20133 Milano (Italy).

^{d.} Instituto per lo Studio delle Macromolecule, Consiglio Nazionale delle Ricerche, (ISMAC-CNR), via E. Bassini, 15, 20133 Milano, Italy

^e Present address: Università degli Studi di Milano-Bicocca, Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy

Chemistry

Scheme S1: Synthesis of glycoconjugate 18	pg. 3
Synthesis of compound 19	pg. 3
Synthesis of compound 20	pg. 3
Synthesis of compound 21	pg. 4
Synthesis of compound 22	pg. 4
Synthesis of compound 23	pg. 4
Synthesis of compound 18	pg. 4
Figure S2: Compounds numbering for spectral assignment	pg. 5
¹ H and ¹³ C spectra	pg. 6
Compound 9	pg. 6
Compound 10	pg. 7
Compound 11	pg. 8
Compound 3	pg. 9
Conversion of compound 12 in compound 13	pg. 10
Compound 14	pg. 11
Compound 15	pg. 12
Compound 16	pg. 13
Compound 17a	pg. 14
Compound 17b	pg. 15
Compound 4	pg. 16
Compound 5	pg. 17
Compound 19	pg. 18
Compound 20	pg. 19
Compound 22	pg. 20
Compound 23	pg. 21
Compound 18	pg. 22
Compound 6	pg. 23
Fluorescence confocal microscopy	
Figure S3	pg. 24
Figure S4	pg. 24
Figure S5	pg. 24
Figure S6	pg. 25
Figure S7	pg. 25
Figure S8	pg. 26
Figure S9	pg. 26
Figure S10	pg. 26

Synthetical procedures

Scheme S1 Synthetic pathway for the preparation of the multivalent glycoconjugate 18

Compound 19. penta-*O*-acetyl-D-glucose (**8**) (1.25 g, 3.2 mmol, 1 eq) were added to the solution of (**13**) (4 mmol, 1.25 eq) in DCM (20 mL) and treated with BF₃-Et₂O (608 μL, 4.8 mmol, 1.5 eq) at 0°C under nitrogen atmosphere. Then the mixture was slowly allowed to warm, stirred at room temperature and followed by TLC (Hex:AcOEt 6:4 Rf prod.= 0.24). After 5h the reaction was quenched by addition of Et₃N (1 mL) stirred for additional 15 min and concentrated under reduced pressure. The crude was purified by flash chromatography (Hex:AcOEt gradient elution) affording pure compound (**19**) (1.03 g, 70%, β-anomer). ¹H NMR (400 MHz, CDCl₃) δ 5.21 (t, J_{2,3} = 9.6 Hz, 1H, H3), 5.12 – 5.05 (m, 1H, H4), 5.00 (dd, J_{2,3} = 9.6, J1,2 = 8.0 Hz, 1H, H2), 4.61 (d, J_{1,2} = 8.0 Hz, 1H, H1), 4.26 (dd, J_{7a,7b} = 12.3, J_{7a,8} = 4.7 Hz, 1H, H7a), 4.14 (dd, J_{7a,7b} = 12.3, J_{7a,8} = 2.4 Hz, 1H, H7b), 3.95 (dt, J_{6a,6b} = 11.1, J_{6a,5} = 4.0 Hz, 1H, H6a), 3.79 – 3.67 (m, 2H, H6b, H5), 3.67 – 3.63 (m, 4H, H8, H9), 3.42 – 3.32 (m, 2H, H10), 2.09 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.02 (s, 3H, OAc), 2.00 (s, 3H, OAc); ¹³C NMR (100 MHz, CDCl₃) δ 170.82, 170.40, 169.57, 169.53 (CO), 100.97 (C1), 72.95 (C3), 71.94 (C5), 71.42 (C2), 70.56, 70.35 (C8, C9), 69.20 (C6), 68.53 (C4), 62.07 (C7), 50.91 (C10), 20.88, 20.82, 20.76, 20.75 (OAc); MS (ESI) m/z calculated for [C₁₈H₂₇N₃O₁₁Na]⁺: 484.15 found: 484.3 [M+Na]⁺; [α]^D₂₅: -15.4 (C = 0.865, CHCl₃).

Compound 20. A solution of compound (**19**) (1 g, 2.21 mmol) in freshly distilled MeOH (90 mL) was treated with a solution of NaOMe (10 mL, 1 M in MeOH). The reaction was stirred at room temperature under nitrogen atmosphere. After 1 h the reaction was complete. The mixture was diluted with MeOH and neutralized by addition of Amberlite IR 120-H+ resin, then the beads was filtered off and washed with MeOH. Finally the solvent was removed under reduced pressure and the crude was purified by flash chromatography (DCM: MeOH 9:1) affording pure compound (**20**) (590 mg, 97 %). ¹H NMR (400 MHz, MeOD) δ 4.32 (d, J_{1,2} = 7.8 Hz, 1H, H1), 4.02 (m, 1H, H7a), 3.87 (dd, J_{6a,6b} = 11.9, J_{6,5} 1.7 Hz, 1H, H6a), 3.79 – 3.62 (m, 6H, H8, H9, H6b, H7b), 3.43 – 3.37 (m, 2H, H10), 3.35 (m, 1H, H3), 3.29 – 3.26 (m, 2H, H4, H5), 3.20 (dd, J_{2,3} = 9.1, J_{1,2} = 7.8 Hz, 1H, H2); ¹³C NMR (100 MHz, MeOD) δ 104.48 (C1), 77.95 (C3, C5), 75.08 (C2), 71.60 (C4), 71.44, 71.00 (C8, C9), 69.76 (C7), 62.74 (C6), 51.76 (C10); MS (ESI) m/z calculated for $[C_{10}H_{19}N_3O_7Na]^+$: 316.11, found: 316.2 $[M+Na]^+$; $[\alpha]^D_{25}$: -25.3 (C = 0.61, MeOH).

Compound 21. Prepared as reported in literature¹

Compound 22. To a reaction vessel containing compound (**21**) (55 mg, 155 µmol, 1 eq), TBTA (16.3 mg, 30 µmol, 0.2 eq), CuSO₄ (3.85 mg, 15 µmol, 0.1 eq), sodium ascorbate (12 mg, 61 µmol, 0.4 eq), compound (**20**) (150 mg, 511 µmol , 3.3 eq) were added and dissolved in a mixture of H₂O:THF 1:1 (8 mL), then the reaction was stirred under nitrogen at room temperature for 16 hours. The crude mixture was directly loaded in a C-18 column and purified by RP-18 chromatography (H₂O:MeOH gradient elution) obtaining 183 mg of pure compound (**22**) (yield 96%). ¹H NMR (400 MHz, MeOD) δ 8.03 (s, 3H, H11), 4.59 (t, J_{10,9} = 5.0 Hz, 6H, H10), 4.54 (s, 6H, H13), 4.29 (d, J_{1,2} = 7.8 Hz, 3H, H1), 4.01 – 3.94 (m, 3H, H7a), 3.94 – 3.89 (m, 6H, H9), 3.87 (dd, J_{6a,6b} = 11.8, J_{6a,5} = 1.7 Hz, 3H, H6a), 3.74 – 3.62 (m, 16H, H20, H8, H7b, H6b, H19), 3.62 – 3.58 (m, 2H, H18), 3.53 – 3.50 (m, 2H, H17), 3.47 (s, 6H, H14), 3.42 (s, 2H, H16), 3.39 – 3.33 (m, 3H, H3), 3.28 (m, 6H, H4, H5), 3.20 (dd, J_{2,3} = 9.1, J1,2 = 7.8 Hz, 3H, H2); ¹³C NMR (100 MHz, MeOD) δ 146.07 (C12), 125.96 (C11), 104.47 (C1), 78.04, 78.00 (C3, C5), 75.11 (C2), 72.48 (C19), 72.11 (C17), 71.64 (C4), 71.38 (C8), 71.36 (C18), 70.78 (C16), 70.35 (C9), 70.04 (C14), 69.81 (C7), 65.31 (C13), 62.77 (C6), 51.35 (C10), 46.54 (C15), 44.06 (C20); MS (ESI) m/z calculated for [C₄₈H₈₂CIN₉O₂₆Na]⁺: 1258.50, found: 1259.0 [M+Na]⁺; [α]^D₂₅: -16.1 (C = 0.88, MeOH).

Compound 23. To a solution of compound (**22**) (178 mg, 143 µmol, 1 eq) in anhydrous DMF, NaN₃ (75 mg, 1.15 mmol, 8 eq) and Nal (2.14 mg, 14.3 µmol, 0.1 eq) were added. The reaction mixture was stirred at 60°C under nitrogen overnight. The crude mixture was directly loaded in a C-18 column and purified by RP-18 chromatography (H₂O:MeOH gradient elution) obtaining 170 mg of pure compound (**23**) (yield 96.5%). ¹H NMR (400 MHz, MeOD) δ 8.02 (s, 3H, H11), 4.61 – 4.56 (m, 6H, H10), 4.54 (s, 6H, H13), 4.29 (d, J1,2 = 7.8 Hz, 3H, H1), 4.01 – 3.94 (m, 3H, H7a), 3.94 – 3.90 (m, 6H, H9), 3.89 – 3.83 (m, 3H, H6a), 3.74 – 3.62 (m, 14H, H6b, H7b, H8, H19), 3.61 – 3.56 (m, 2H, H18), 3.54 – 3.49 (m, 2H, H17), 3.47 (s, 6H, H14), 3.43 (s, 2H, H16), 3.39 – 3.33 (m, 5H, H3, H20), 3.29 – 3.25 (m, 6H, H4, H5), 3.20 (dd, J2,3 = 9.0, J_{1,2} = 7.8 Hz, 3H, H2); ¹³C NMR (100 MHz, MeOD) δ 146.10 (C12), 125.93 (C11), 104.49 (C1), 78.05, 78.01 (C3, C5), 75.11 (C2), 72.18 (C17), 71.65 (C4), 71.40 (C8, C18), 71.16 (C19), 70.84 (C16), 70.36 (C9), 70.08 (C14), 69.81 (C7), 65.33 (C13), 62.79 (C6), 51.83 (C20), 51.36 (C10), 46.56 (C15); MS (ESI) m/z calculated for [C₄₈H₈₂N₁₂O₂₆Na]⁺:1265.54, found: 1265.8 [M+Na]⁺; [α]^D ₂₅: -18.5 (C = 0.52, MeOH).

Compound 18. To a solution of compound (**23**) (26.2 mg, 21 µmol, 1 eq) in freshly distilled MeOH (1 mL), HCl (21 µL, 1.25 M in MeOH) was slowly added under nitrogen atmosphere. After 10 min a catalytic amount of Pd/C was added, then the mixture was stirred under H₂ atmosphere at r.t. for 1 hour. The crude was diluted with MeOH and the cataylst was filtered off through a celite pad. Remotion of the solvent under reduced pressur afforded pure compound (**18**) (22.1 mg, 84% yield) as chlorohydrate salt. ¹H NMR (400 MHz, MeOD) δ 8.05 (s, 3H, H11), 4.63 – 4.56 (m, 6H, H10), 4.53 (s, 6H, H13), 4.30 (d, J_{1,2} = 7.8 Hz, 3H, H1), 4.01 – 3.95 (m, 3H, H7a), 3.93 – 3.90 (m, 6H, H9), 3.89 – 3.83 (m, 3H, H6a), 3.76 – 3.63 (m, 14H, H6b, H7b, H8, H19), 3.62 – 3.57 (m, 2H, H18), 3.56 – 3.51 (m, 2H, H17), 3.46 (s, 6H, H14), 3.42 (s, 2H, H16), 3.40 – 3.35 (m, 3H, H3), 3.30 – 3.26 (m, 6H, H4, H5), 3.20 (dd, J_{2,3} = 9.0, J_{1,2} = 7.8 Hz, 3H, H2), 3.12 – 3.07 (m, 2H, H20); ¹³C NMR (100 MHz, MeOD) δ 145.92 (C12), 126.05 (C11), 104.44 (C1), 78.03, 77.99 (C3, C5), 75.09 (C2), 72.20 (C17), 71.62 (C4), 71.37, 71.34 (C8, C18), 70.88 (C16), 70.31 (C9), 70.03 (C14), 69.78 (C7), 68.49 (C19), 65.22 (C13), 62.72 (C6), 51.34 (C10), 46.49 (C15), 40.95 (C20); MS (ESI)

¹ N. Varga, I. Sutkeviciute, R. Ribeiro-Viana, A. Berzi, R. Ramdasi,

A. Daghetti, G. Vettoretti, A. Amara, M. Clerici, J. Rojo, F. Fieschi, A. Bernardi Biomaterials 2014, 35, 4175-4184

m/z calculated for $[C_{48}H_{84}N_{10}O_{26}Na]^+$: 1239.55, found: 1240.0 $[M+Na]^+$ and 620.7 $[M+H+Na]^{2+}$; $[\alpha]^D_{25}$: -17.25 (C = 1.10, MeOH).

Compounds Numbering for spectral assignment

-cc Ċ . Re-cc oc ςο

Compound 3 Chemical Formula: C₂₀H₂₂Cl₂N₂O₁₂Re₂ Exact Mass: 925,9665 Molecular Weight: 925,7149

Compound 6 Chemical Formula: C₆₂H₉₂Cl₂N₁₂O₃₃Re₂ Exact Mass: 1976,4382 Molecular Weight: 1976,7745

TFA 0 HN[^] 00 oc-Re^{CI}-Ré-co °CI OC

Compound 17b Chemical Formula: C₁₉H₂₂Cl₂N₄O₉Re₂ Exact Mass: 893,9879 Molecular Weight: 893,7194

ço 00 OH Re-co ći či Ré-co 11 oc òο

Compound 4 Chemical Formula: C₂₅H₃₂Cl₂N₄O₁₄Re₂ Exact Mass: 1056,0407 Molecular Weight: 1055,8600

_OH -C со H Ré-co λŀ \cap ći 'n `Re-co) N H 11 13 17 OC òο

Compound 5 Chemical Formula: C₃₁H₄₂Cl₂N₄O₁₉Re₂ Exact Mass: 1218,0935 Molecular Weight: 1218,0006 Figure S2: numbering of compounds (3-6) and precursor (17b).

¹H and ¹³C spectra

Conversion of compound 12 in compound 13

Compound 17b

220 210 200 190 180 170 160 150

140 130 120

110 100 f1 (ppm) 80 70 60 50 40 30

90

--3000 --4000

20 10 0 -10

Fluorescence confocal microscopy

Figure S3: Zoom-out fluorescence confocal image of HeLa cells after the incubation of the compound 3 (50 μ M in less than 1% DMSO containing PBS). The samples were excited at λ_{exc} = 405 nm.

Figure S⁴ Fluorescence confocal images of HeLa cell after the incubation of compound 5 at three different concentration (a) 25, (b) 50, and (c) 100 μ M (in less than 1% DMSO containing PBS). d. The emission spectrum recorded from the cytoplasm of the cell. The samples were excited at λ_{exc} = 405 nm.

Figure S5 a.) Recorded emission intensity of stained HeLa cell after the incubation of compound 4 at three different concentrations: 25, 50, and 100 μ M (in less than 1% DMSO containing PBS). b.) The emission intensity from three different complexes recorded from cytoplasmic region of the cells at different incubation times. The samples were excited at λ_{exc} = 405 nm, respectively.

Fig S6 Confocal images of HeLa cells line (a) before and (b-f) after addition of the compound **4** at concentration 100 μ M in less than 1% v/v DMSO containing PBS. Kinetic experiment shows fast internalization of compound at different times (b) seconds, (c) 10 minutes, (d) 20 minutes, (e) 40 minutes, and (f) 1 hour after incubation. The samples were excited at λ_{exc} = 405 nm.

Fig S7 Confocal images of HeLa cells line (a) before and (b-f) after addition of the compound **5** at concentration 100 μ M in less than 1% v/v DMSO containing PBS. Kinetic experiment shows fast internalization of compound at different time (b) seconds, (c) 10 minutes, (d) 20 minutes, (e) 40 minutes, and (f) 1 hour after incubation. The samples were excited at λ_{exc} = 405 nm.

Fig S8 Fluorescence confocal micrograph showing the distribution of compound a. 3 and b. 5 inside endoplasmic reticulums of HeLa cells at concentration of 100 μM in less than 1% DMSO containing PBS as the incubation media. The excitation wavelength for compound 3 and 5 was 405 nm while ER-Tracker[™] Red was excited at 594 nm.

Fig S9 Fluorescence confocal images of collocalization studies neglecting the presence of 5 (100 μ M in less than 1% DMSO containing PBS) inside cell nucleus of HeLa cell. (a) 5, (b) DAPI stains nucleus, and (c) overlap image of a and b. (d). The orthogonal view of the presence of 5 inside the cytoplasmic region of the cell. The excitation wavelength for DAPI and 5 was 405 nm, while Phalloidin Alexa Fluor⁶ 647 was excited at 633 nm.

Fig S10 Fluorescence confocal image of HeLa cell after the incubation of compound **6** at concentration 50 \mathbb{Z} M in less than 1% DMSO containing PBS b.) Emission spectrum recorded from the cytoplasm of the cell which shown typical broad-band autofluorescence signal coming from NADH and FAD molecules. The samples were excited at λ_{exc} = 405 nm, respectively.