Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Synthesis, SAR and biological studies of sugar amino acid based almiramide analogues: *N*-methylation leads the way

Dipendu Das,^a Hina P. A. Khan,^b Rahul Shivahare,^c Suman Gupta,^c Jayanta Sarkar,^d Mohd. Imran

Siddiqui, e Ravi Sankar Ampapathi, *f Tushar Kanti Chakraborty*b

CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Department of Organic Chemistry, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India

tushar@orgchem.iisc.ernet.in

Table of Contents:

1.	General Experimental Details and Instrumentation:	S2
2.	Spectra (¹ H and ¹³ C NMR) of Compounds:	S3-S34
3.	SAR studies	S35-S40
4.	NMR studies	S41-S52
5.	RPHPLC Chromatograms	S53-S64

General Experimental Details:

All the reactions were carried out under an inert atmosphere in oven-dried glassware using dry solvents, unless otherwise stated. All chemicals purchased from commercial suppliers were used as received unless otherwise stated. Reactions and chromatography fractions were monitored by Merck silica gel 60 F-254 glass TLC plates and visualized using UV light, 7% ethanolic phosphomolybdic acid-heat, 2.5% ethanolic anisaldehyde (with 1% AcOH and 3.3% conc. H₂SO₄), ninhydrin or chlorine/*o*-tolidine-heat as developing agents. Flash column chromatography was performed with 100-200 mesh silica gel and yields refer to chromatographically and spectroscopically pure compounds.

Instrumentation:

All NMR spectra were recorded in CDCl₃ or in DMSO-*d*₆ on a 300, 400 and 500 MHz instruments at 300 K and are calibrated to residual solvent peaks (CHCl₃ 7.26 ppm and 77.0 ppm, DMSO 2.50 ppm and 40 ppm). Multiplicities are abbreviated as: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplate. All IR data were recorded as neat liquid or KBr pellets using a Perkin Elmer's RX I FTIR spectrophotometer. Mass spectra were obtained under electron spray ionisation (ESI) and HRMS spectra were taken with a 3000 mass spectrometer using Waters Agilent 6520-Q-TofMS/MS system and JEOL-AccuTOF JMS-T100 LC. RP-HPLC was performed on a waters HPLC system and Shimadzu's ISO 9001 HPLC system (model no. LC-20AD) equipped with a 5 μ SunFire C18 column (4.6 × 250 mm) and 5 μ Shimadzu's C18 column (4.6 × 250 mm) respectively in combination with eluants A (H₂O) and B (MeCN) with flow rate: 0.8 mL/min and photodiode array detector setting of λ = 210-254 nm.

Spectra (¹H and ¹³C NMR) of Compounds:

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 8.

0 ppm

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 11.

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 19.

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 20.

• ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 20.

• ¹³C NMR spectrum (DMSO- d_{6} , 100 MHz) of compound 20.

• ¹H NMR spectrum (CDCl_{3,} 300 MHz) of compound 4A.

• ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4A.

• ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4A.

• ¹H NMR spectrum (DMSO- d_{6} , 400 MHz) of compound 4B.

• ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4B.

• ¹H NMR spectrum (DMSO- $d_{6,}$ 400 MHz) of compound 4C.

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 21.

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 22.

• ¹H NMR spectrum (DMSO-*d*₆, 300 MHz) of compound 4D.

• ¹³C NMR spectrum (DMSO-*d*₆, 75 MHz) of compound 4D.

• ¹H NMR spectrum (DMSO-*d*₆, 300 MHz) of compound 4E.

• ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4E.

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4F.

S17

• ¹H NMR spectrum (DMSO- d_{6} , 400 MHz) of compound 4G.

• ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4H.

• ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4H.

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4I.

• ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4J.

0 ppm

• ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4K.

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4L.

• ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 4L.

• ¹³C NMR spectrum (DMSO- d_{6} , 100 MHz) of compound 4M.

• ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4N.

• ¹³C NMR spectrum (DMSO- d_{6} , 100 MHz) of compound 4N.

• ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 4O.

• ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4P.

• ¹H NMR spectrum (DMSO- d_{6} , 400 MHz) of compound 4Q.

• ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 4R.

• ¹³C NMR spectrum (DMSO- d_{6} , 100 MHz) of compound 4S.

• ¹³C NMR spectrum (DMSO- d_{6} , 100 MHz) of compound 4T.

• ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4U.

• ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 4U.

• ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4V.

• ¹³C NMR spectrum (DMSO- d_{6} , 100 MHz) of compound 4V.

• ¹H NMR spectrum (DMSO- d_{6} , 400 MHz) of compound 4W.

• ¹³C NMR spectrum (DMSO- d_{6} , 100 MHz) of compound 4W.

SAR studies:

• Method:

Molecules were drawn and minimized in MOE followed by partial charge calculation using AMBER99. Structures were subsequently subjected to molecular dynamics simulation at 300 K and AMBER99 force field in vacuum with 100 ps of equilibrium run followed by production run for 500 ps. Resulting structures were analyzed in Chimera.

• Table S1. Listing the phi and psi values for compounds with their corresponding activities:

Compound	Antiamastigote activity (IC₅₀,μM)	phi1	psi1
	(MQ/amast. model)		
4A	>100	-61.755	-0.71
4B	>100	-134.198	-1.212
4C	26.41	49.707	59.072
4D	>100	-59.787	-16.771
4E	>25	-59.901	10.461
4F	92.18	-65.788	-30.967
4G	>100	-75.104	-4.855
4H	56.48	113.958	-46.977
41	>100	-59.891	-14.16
4J	>100	-46.942	-25.482
4К	>100	-137.28	59.323

4L	60.67	-67.65	-8.03
4M	>100	-62.493	-23.785
4N	26.67	58.367	46.577
40	68.48	-63.718	-5.054
4P	>100	-74.749	10.65
4Q	10.10	66.404	59.106
4R	>50	-44.178	-23.69
4S	>100	-68.138	-13.506
41	10.92	50.737	53.02
40	>100	-20.932	-25.19
40	13 63	-22.010	-10.524
400	13.05	00.5	01.5

• Effect of H-bonding on the structural changes in the domain of peptides:

The amide proton containing molecules form the hydrogen bond between the carbonyl oxygen of the first residue and amide proton of the third residue and adopts a particular tight gamma turn resulting the *N*-terminal hydrophobic chains to turn around the backbone leading to the disruption of coiled secondary structure and also in the reduction of hydrophobic surface area.

<u>NMR Studies</u>: Solution NMR spectra were recorded on 500 MHz spectrometers at room temperature or else as mentioned using 2-10 mM concentration of peptides in appropriate solvents using TMS as internal standard or the solvent signals as secondary standards and the chemical shifts (δ) are shown in ppm scales. ¹³C spectra were recorded at 125 MHz with complete proton decoupling. The proton resonance assignments were carried out by using ¹H-¹H Two-dimensional total correlation spectroscopy (TOCSY), and Rotating frame nuclear Overhauser effect spectroscopy (ROESY). All the experiments were carried out in the phase sensitive mode. The spectra were acquired with 1024x256 or 2048x192 free induction decays (FID) containing 8-16 transients with relaxation delay 1-2 s. The TOCSY experiments were performed with mixing time of 0.08s, and spin-locking field of 10 kHz. The two dimensional data were processed with Gaussian apodization in both the dimensions. The ROESY experiments were performed with mixing times of 0.2 to 0.3 s, and a spin locking field of about 2.5 kHz. Variable temperature (VT) studies were carried out by varying temperature by 10°C for every increment from 20°C-70°C. Small changes in amide proton chemical shifts (ppb/°K) during VT studies have been used to indicate their participation in H-bonding.

Table S2: Chemical shift (δ in ppm) and coupling constants (*J* in Hz) for **4P** in DMSO- d_6 (~8 mM, 500 MHz, 300 K)

Res	NH	CαH	СβН	СүН	СδН	ϹϩΗ	Δδ/ΔΤ
¹ PHE	7.57 (<i>d,</i> ³ J _{NH-} _{cαH} =8.5 Hz)	4.425 (<i>ddd</i> , 1H, ³ J _{CαH-cβH} = 5.3 Hz, ³ J _{CαH-} _{cβ'H} =7.9 Hz)	2.96 (<i>dd</i> , 1H, ${}^{3}J_{C\betaH-c\gamma H} = 5.3$ Hz, ${}^{3}J_{C\beta H-c\beta' H}$ =13.2 Hz) 2.91 (<i>dd</i> , 1H, ${}^{3}J_{C\beta' H-c\gamma H} = 7.9$ Hz)	-	_	_	3.25
² MAA	8.13 (d, 1H, ³ J _{NH-} _{CαH} =6.0)	4.29 (d, 1H, ³ J _{CαH-cβH} = 1.8 Hz)	3.813 (t, 1H, ³ J _{cβH-CγH} = 1.8Hz)	3.63 (dd, 1H, ³ J _{сүн-сбн} = 2.7 Hz)	3.89 (dt, 1H, ³ J _{СбН-} _{Сєн, н'} = 6.8 Hz)	3.26 (m, 1H), 3.14 (m, 1H)	10.75

³ VAL	7.65 (<i>d</i> ,	4.15 (<i>dd,</i> 1H,	1.93 (<i>dd</i> , ³ <i>J</i> _{CbH-}	0.822 (d,			5.75
	1H, ³ J _{NH-}	³ <i>J</i> _{CαH-cβH} =6.8	_{сүН} =6.8 Hz)	6H)			
	_{Hα} =8.8	Hz)					
	Hz)						
⁴ VAL	7.83 (t,	4.17 (dd , ${}^{3}J_{C\alpha H}$ -	1.95 (<i>dd</i> , ³ <i>J</i> _{CαH-}	0.804 (d,			4.50
	³ J _{NH-Hα}	_{сβН} =6.8	_{сβН} = 6.8	6H)			
	=8.9						
Acetyl		2.136 (m,2H)	1.515(m,2H)	1.254	1.537	2.53 (m,	4.0 for
				(m,2H)	(m,2H)	2H)	7.45

Figure S1: 2D-TOCSY NMR spectrum (DMSO-d₆, 400 MHz) of compound 4P

Figure S3: Stacked 1H-spectra of 4P collected from 293 K-333 K

Figure S4: 2D-TOCSY NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4V

Figure S5: 2D-ROESY NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4V

S44

Figure S6: Stacked 1H-spectra of 4V collected from 293 K-333 K

Table S3: C	Chemical sh	nift (δ in ppm	i) and couplir	ig constants	(J in Hz) for 4	V in DMSO- d_6	(~8 mM,
500 MHz, 3	300K)						

Residues	NH	CαH	СβН	СүН	СδΗ	CεH	Δδ/ΔΤ
¹ PHE	7.56 (<i>d</i> , ³ J _{NH-cαH} = 8.4	4.41 (<i>ddd</i> , 1H, ${}^{3}J_{C\alpha H-c\beta H} =$ 5.4 Hz, ${}^{3}J_{C\alpha H-}$ ${}_{C\beta'H} = 7.8$ Hz)	2.93 (m, 2H)				3.6
² MAA	8.11 (<i>t,</i> ³ J _{NH-cεH,} _{CεH'} =5.7 Hz)	4.26 (d, ³ J _{Сан-} _{сβн} = 1.9 Hz)	3.81 (1H, ³ J _{cβH-CγH} = 1.9Hz)	3.62 (dd, 1H, ³ J _{сүН-} _{сбн} = 2.7 Hz)	3.87 (dt, 1H, ³ J _{сбн-} _{Сєн, н} = 6.8 Hz)	3.14(m, 1H), 3.25 (m, 1H)	6.3
³ VAL	7.62 (<i>d</i> , ³ J _{NH-cαH} = 8.9	4.14 (<i>d</i> , ³ J _{Сан-} _{сβн} = 7.3	1.92 (m, 1H)	0.82 (d <i>,</i> 6H)			6.0
⁴ VAL	7.81 (<i>d</i> , ³ J _{NH-cαH} = 8.9 Hz)	4.16 (dd, ³ J _{CαH-cβH} =7.3 Hz)	1.94 (<i>m,</i> 1H)	0.80 (<i>d,</i> 6H)			4.8

Acetyl	 2.134	1.462	1.212	 	4.5 for
					7.44

Figure S7: Expanded ROESY spectra of **4P** and **4V** in DMSO- d_6 (~8 mM, 300 K). The nOes MaaC ϵ H(pro-S) \leftrightarrow PheNH, MaaC ϵ H(pro-R) \leftrightarrow PheNH, MaaC δ H \leftrightarrow PheNH, MaaC ϵ H(pro-R) \leftrightarrow PheNH, MaaC β H \leftrightarrow PheNH, MaaC δ H \leftrightarrow PheNH, MaaC β H \leftrightarrow PheNH, MaaC δ H \leftrightarrow PheNH, MaaC δ H \leftrightarrow PheNH are marked as **1**-**7**.

Figure S8: 2D-TOCSY NMR spectrum (DMSO-d₆, 400 MHz) of compound 4Q

Figure S9: 2D-ROESY NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4Q

Table S4: Chemical shift (δ in ppm) and coupling constants (J in Hz) for **4Q** in DMSO- d_6 (~8 mM, 500 MHz, 300K)

ΑΑ	NH	CαH	СβН	СүН	Сбн	СєН	Others	Δδ/ΔΤ
¹ PHE		5.43	2.70,				2.78	
			3.13					
² MAA		4.65			4.02			
³ VAL		4.98	2.19	0.65, 0.81			2.97	
⁴ VAL		5.04	2.19	0.71, 0.77			2.81	
ACetyl		2.134	1.462	1.212				

Figure S10: 2D-TOCSY NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4W

Figure S11: 2D-ROESY NMR spectrum (DMSO-d₆, 400 MHz) of compound 4W

<u>Molecular dynamics</u>: The Discovery studio 3.0 client Program was used for the restrained molecular dynamics and energy minimization calculation using CHARMm force field with default parameters throughout the simulation with the aid of distance dependent dielectric constant = 38. A force constant of 10 K cal/Å and 5 K cal/Å was used for distance and torsional restraints respectively. Minimizations were done initially with steepest descent algorithm followed by conjugate gradient methods for maximum 1000 iterations or RMS Deviation of 0.001 Kcal /mol, whichever was earlier. The molecules were initially equilibrated for 5ps and then after subjected to 1nS production run. Starting from 50 K, they were heated to 300 K in five steps increasing the temperature 50 K at each step. 20 structures were stored from the production run and are again energy minimized with the above mentioned protocol. Out of

these 20 structures 15 least energy structures were superimposed and are presented as Stereo view figures for each foldamer.

Figure S12. Stereo view of 15 minimum energy superimposed structures with H-bond for 4P.

Table S5. Distance constraints used in MD calculation for **4P** derived from ROESY experiment in DMSO- d_6 (~8 mM, 500 MHz, 300 K).

Residue-Residue	Volume	Distance (Max.)	Distance (Min.)
¹ PheC α H-HN	6.07E+06	4.5	3.5
¹ PHEC β H- ³ ValHN	5.45E+06	4.5	3.5
² MAAC α H- ¹ PHEHN	3.40E+06	4.5	3.5
² MAAC α H-HN	4.42E+05	5.5	4.5
² MAAC δ H- ¹ PHEHN	6.70E+06	4.5	3.5
² MAA C δ H-HN	3.87E+06	4.5	3.5
² MAACEH (pro-R) -HN	5.82E+06	4.5	3.5
² MAACEH(pro-S)-			
¹ PHEHN	4.04E+05	5.5	4.5
² MAAHE (pro-S) -HN	6.83E+06	4.5	3.5
² MAAHG-HN	4.79E+06	4.5	3.5
³ VALC α H- ² MAAHN	2.39E+07	5.5	4.5
3 VALC β H- 2 MAAHN	3.86E+06	4.5	3.5
³ VALHG- ² MAAHN	2.28E+06	4.5	5.5
⁴ VALHG- ¹ PHEHN	9.50E+05	5.5	4.5

Figure S13. Stereo view of 15 minimum energy superimposed structures with H-bond for 4V.

Table S6. Distance constraints used in MD calculation for **4V** derived from ROESY experiment in DMSO- d_6 (~8 mM, 500 MHz, 300 K).

Residue-Residue	Volume	Distance (Max)	Distance (Min)
$^{2}C\alpha$ H-TNH2-A	3.60E+05	5.5	4.5
¹ PHE C β H- ² MAAC α H	6.09E+05	5.5	4.5
3 VALC β H- 2 MAAC α H	6.42E+05	5.5	4.5
² MAAHE (pro-R) -TNH2-A	6.71E+05	5.5	4.5
2 MAAC α H-HN	8.27E+05	5.5	4.5
² MAAHN- ¹ PHEHN	8.65E+05	5.5	4.5
² MAAC ε H _(pro-R) - ¹ PHEHN	1.04E+06	4.5	3.5
¹ PHEHN-TNH2-A	1.40E+06	4.5	3.5
³ VALC γ,γ' H- ¹ PHEHN	1.64E+06	4.5	3.5
$Ace-C\gamma H-^{4}VALHN$	2.39E+06	4.5	3.5
² MAAC β H- ¹ PHEHN	2.44E+06	4.5	3.5
³ VALC γ H,C γ H'-2MAAC α H	2.65E+06	4.5	3.5
² MAAHG-C a H	3.35E+06	4.5	3.5
TNH2-C β H- ¹ PHEHN	3.60E+06	4.5	3.5
ACHE-ACFH-Ar	3.79E+06	4.5	3.5

³ VALCγH, Cγ'H- ² MAAHD	3.79E+06	4.5	3.5
¹ PHEC β , β' H-TNH2-A	4.47E+06	4.5	3.5
² MAACEH (<i>pro-R</i>) -CaH	4.73E+06	4.5	3.5
Ace-C β H-4VALHN	5.72E+06	4.5	3.5
² MAAC α H- ¹ PHEHN	6.82E+06	4.5	3.5
2ΜΑΑΟδΗ-ΗΝ	7.26E+06	4.5	3.5
2МААСүН-НD	8.27E+06	4.5	3.5
2МААСүН-НN	9.87E+06	4.5	3.5
1PHECβ,β'H-HN	1.02E+07	3.5	2.5
3VALHN-4VALHN	1.13E+07	3.5	2.5
4VALHN-3VALHN	1.17E+07	3.5	2.5
3VALCβH-2MAAHN	1.18E+07	3.5	2.5
2MAACδH-1PHEHN	1.23E+07	3.5	2.5
3VALCγ.γ'H- ² MAAHN	1.24E+07	3.5	2.5
² MAAHN-3VALHN	1.26E+07	3.5	2.5
1PHECAH-HN	1.28E+07	3.5	2.5
² MAACγH-HD	1.32E+07	3.5	2.5
4VALCaH-HN	1.38E+07	3.5	2.5
1PHECaH-TNH2-A	1.39E+07	3.5	2.5
3VALCγH, Cγ'H-ACHE	1.44E+07	3.5	2.5
² MAAC ε H (pro-S) - C α H	1.46E+07	3.5	2.5
² MAAC ε H (<i>pro-R</i>) –C β H	1.58E+07	3.5	2.5
² ΜΑΑСβΗ-СαΗ	1.61E+07	3.5	2.5
4VALCβH-HN	1.62E+07	3.5	2.5
² MAACEH (pro-S) -HN	2.08E+07	3.5	2.5
² ΜΑΑСγΗ-СβΗ	2.09E+07	3.5	2.5
4VALCγH, Cγ'H-HN	2.12E+07	3.5	2.5
3VALCβH-HN	2.18E+07	3.5	2.5
3VALCγH, Cγ'H-HN	2.27E+07	3.5	2.5
² MAA C ϵ H (pro-S) - C β H	2.27E+07	3.5	2.5
² MAA C ϵ H (pro-R) -C δ H	2.70E+07	3.5	2.5
AceC δ H -ACFH-Ar	4.21E+07	3.5	2.5
² MAACEH (pro-R) -HN	4.67E+07	3.5	2.5
Ace-CaH-4VALHN	5.09E+07	3.5	2.5
³ VALHN- ² MAAHN	6.81E+07	3.5	2.5
⁴ VALC α H- ³ VALHN	7.18E+07	3.5	2.5
³ VALC α H- ² MAAHN	7.49E+07	3.5	2.5
² МААС б н -С а н	1.21E+08	3.5	2.5

RPHPLC Chromatograms:

• HPLC chromatogram of compound 20.

Summary Injection Volume : 20

Ret. Time	Area	Area%
12.164	73218	8.899
12.425	660164	80.236
13.106	89400	10.866
	822782	100.000

• HPLC chromatogram of compound 4A.

• HPLC chromatogram of compound 4B.

Peak Results						
	Name	RT	Area	% Area	Height	
1	Peak1	5.887	2693124	13.54	276755	
2	Peak2	7.350	17201969	86.46	1908732	

• HPLC chromatogram of compound 4C.

	Peak Results						
	Name	RT	Area	% Area	Height		
1	Peak1	7.753	20073184	100.00	2171260		

• HPLC chromatogram of compound 4D.

Peak Results							
	Name	RT	Area	% Area	Height		
1	Peak1	5.907	9047991	98.04	1125542		
2	Peak2	8.004	180432	1.96	22606		

• HPLC chromatogram of compound 4E.

Peak Results								
	Name	RT	Area	% Area	Height			
1	Peak1	13.910	23516236	100.00	1367071			

1.80 Peak1 - 7.758-1.60-1.40 1.20-1.00-AU 0.80 0.60-Peak2 - 8.491 0.40 0.20 0.00-4.00 6.00 2.00 8.00 12.00 14.00 16.00 0.00 10.00 18.00 20.00 Minutes

Peak Results						
Name	RT	Area	% Area	Height		
Peak1	7.758	15537780	88.42	1722583		
Peak2	8.491	2033933	11.58	89966		
	Name Peak1 Peak2	Name RT Peak1 7.758 Peak2 8.491	Name RT Area Peak1 7.758 15537780 Peak2 8.491 2033933	Peak Results Name RT Area % Area Peak1 7.758 15537780 88.42 Peak2 8.491 2033933 11.58		

• HPLC chromatogram of compound 4G.

HPLC chromatogram of compound 4F.

•

Peak Results							
	Name	RT	Area	% Area	Height		
1	Peak1	10.480	13921983	91.70	1820587		
2	Peak2	11.142	1260056	8.30	59480		

• HPLC chromatogram of compound 4H.

• HPLC chromatogram of compound 4I.

Peak Results							
	Name	RT	Area	% Area	Height		
1	Peak1	7.910	5232683	91.91	798043		
2	Peak2	9.388	460532	8.09	76658		

• HPLC chromatogram of compound 4J.

Peak Results							
	Name	RT	Area	% Area	Height		
1	Peak1	9.890	9061598	91.78	1117011		
2	Peak2	10.615	811374	8.22	35026		

• HPLC chromatogram of compound 4K.

Peak Results							
	Name	RT	Area	% Area	Height		
1	Peak1	10.572	850881	9.26	130315		
2	Peak2	13.640	8338843	90.74	1252836		

			Peak Results							
L L	Vame	RT	Area	% Area	Height					
1 F	eak1	10.542	10232675	93.72	1522078					
2 F	eak2	11.085	686054	6.28	102474					

• HPLC chromatogram of compound 4M.

Peak Results							
	Name	RT	Area	% Area	Height		
1	Peak1	10.272	17280535	100.00	2099870		

• HPLC chromatogram of compound 4N.

Peak Results					
	Name	RT	Area	% Area	Height
1	Peak1	12.389	82519	5.93	5306
2	Peak2	13.872	1310125	94.07	75644

• HPLC chromatogram of compound 4O.

Peak Results						
	Name	RT	Area	% Area	Height	
1	Peak1	10.431	265735	3.89	30199	
2	Peak2	13.599	6573111	96.11	986338	

• HPLC chromatogram of compound 4P.

Peak Results						
	Name	RT	Area	% Area	Height	
1	Peak1	10.316	24654312	100.00	2868261	

• HPLC chromatogram of compound 4Q.

Peak Results						
	Name	RT	Area	% Area	Height	
1	Peak1	13.923	11000711	100.00	642052	

• HPLC chromatogram of compound 4R.

Peak Results						
	Name	RT	Area	% Area	Height	
1	Peak1	13.682	6906085	93.04	1053216	
2	Peak2	14.702	516476	6.96	56945	

• HPLC chromatogram of compound 4S.

• HPLC chromatogram of compound 4T.

	Peak Results					
	Name	RT	Area	% Area	Height	
1	Peak1	13.831	12043197	100.00	696290	

• HPLC chromatogram of compound 4U.

	Peak Results						
	Name	RT	Area	% Area	Height		
1	Peak1	10.542	10232675	93.72	1522078		
2	Peak2	11.085	686054	6.28	102474		

• HPLC chromatogram of compound 4V.

• HPLC chromatogram of compound 4W.

Summary(Dat	a)	-
Ret. Time	Area	Area%
12.282	18001	2.392
13.663	694831	92.341
16.962	39630	5.267
	752462	100.000