Supplementary Information

Different hollow and spherical TiO₂ morphologies have distinct activities for the photocatalytic inactivation of chemical and biological agents

Yuichi Yamaguchi, Takahito Shimodo, Sho Usuki, Kanjiro Torigoe, Chiaki Terashima, Ken-ichi Katsumata, Masahiko Ikekita, Akira Fujishima, Hideki Sakai, and Kazuya Nakata

aResearch Institute for Science and Technology, Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
bDepartment of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
cDepartment of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
dResearch Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2016
Figure S1. Pore size distributions of TiO$_2$ hollows and spheres.

Figure S2. Diffuse reflectance spectra of TiO$_2$ hollows and spheres.
Figure S3. X-ray diffraction patterns of a) TiO$_2$ spheres and b) hollows after calcination at 773 K.