Electronic Supplementary Information

Spectroscopic study of the excited state proton transfer processes of (8-bromo-7-hydroxyquinolin-2-yl)methyl-protected phenol in aqueous solutions

Jinqing Huang, Adna Muliawan, Jiani Ma, Ming De Li, Hoi Kei Chiu, Xin Lan, Davide Deodato, David Lee Phillips, and Timothy M. Dore

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China

New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, People’s Republic of China.

Department of Chemistry, University of Georgia, Athens, GA 30602, USA

These authors contributed equally to this work.

Figure S1. UV-Vis absorption spectrum of BHQ-OPh in acetonitrile ... 3
Figure S2. UV-Vis absorption spectra of BHQ-OPh in acetonitrile and 1:1 acetonitrile/PBS (pH 7.4) ... 3
Figure S3. Titration of BHQ-OPh and BHQ-OAc to determine pKₐ of the phenolic proton..... 3
Figure S4. Simulated absorption spectrum of BHQ-OPh (N) ... 4
Figure S5. Simulated absorption spectrum of BHQ-OPh (A) ... 4
Figure S6. Frontier molecular orbitals of the strongest oscillator strength transition at 227.78 nm for BHQ-OPh (N) ... 5
Figure S7. Comparison between low power 266-nm resonance Raman spectrum of BHQ-OPh in 1:1 acetonitrile/water and the DFT calculated Raman spectra of the S₀ state of BHQ-OPh (N) and BHQ-OPh (A) .. 5
Figure S8. Comparison between low power 240-nm resonance Raman spectrum of BHQ-OPh in 1:1 acetonitrile/water (pH 5) solution and the DFT calculated Raman spectrum of the S₀ state of BHQ-OPh (N) ... 6
Figure S9. Simulated absorption spectrum for the T₁ state of BHQ-OPh (N).. 6
Figure S10. Simulated absorption spectrum for the T₁ state of BHQ-OPh (A) .. 6
Figure S11. ns-TA spectra of BHQ-OPh in PBS (pH 7.4) after 266-nm excitation................. 7
Figure S12. Fit of the ns-TA spectra in Fig. 4c to determine the rate constant for the decay of the T₁ state of BHQ-OPh (T) ... 7
Figure S13. Comparison between high power 240-nm resonance Raman spectrum of BHQ-OPh in acetonitrile and the DFT calculated Raman spectra of the T₁ and S₀ states of BHQ-OPh (N) ... 7
Figure S14. ns-EM spectra of BHQ-OPh in PBS (pH 7.4) after 266-nm excitation 8
Figure S15. fs-TA spectra of BHQ-OPh in 1:1 acetonitrile/PBS (pH 7.4) after 266-nm excitation ... 9
Figure S16. Comparison between the high power 240-nm resonance Raman spectrum of BHQ-OPh in 1:1 acetonitrile/PBS (pH 7.4) and the DFT calculated Raman spectra of the T₁ and S₀ states of BHQ-OPh (A) 10
Figure S17. fs-TA spectra of BHQ-OPh in 1:1 acetonitrile/water (pH 5.0) after 266-nm excitation ... 10
Scheme S1. Proposed mechanism of BHQ-OPh photoprocesses in acetonitrile 11
Table S1. Selected electronic transition energies, oscillator strength, and molecular orbital transitions from TD-DFT calculations .. 11
Figure S1. UV-Vis absorption spectrum of BHQ-OPh in acetonitrile.

Figure S2. UV-Vis absorption spectra of BHQ-OPh in acetonitrile and 1:1 acetonitrile/PBS (pH 7.4).

Figure S3. Titration of BHQ-OPh (left) and BHQ-OAc (right) to determine the pK\textsubscript{a} of the phenolic proton. BHQ-OPh or BHQ-OAc was dissolved in buffers of known pH, and its spectral maxima were noted by UV-vis at 331 (phenol) and 371 nm (phenolate) (or 330 and 368 nm for BHQ-OAc). The ratio of the absorbance at the two reference wavelengths was plotted vs pH of the buffer. The plot is fitted with a sigmoidal regression and the pK\textsubscript{a} was calculated by solving for the inflection point. Buffers (pH): phosphate (3.91, 6.73, 7.32, and 7.86), acetate (5.13 and 5.65), citrate (6.17), borate (8.59 and 9.47).
Figure S4. Simulated absorption spectrum of BHQ-Oph (N) obtained from TD-DFT calculation at the level of B3LYP/6-311G**.

Figure S5. Simulated absorption spectrum of BHQ-Oph (A) obtained from TD-DFT calculation at the level of B3LYP/6-311G**
<table>
<thead>
<tr>
<th></th>
<th>85 (LUMO+1)</th>
<th></th>
<th>84 (LUMO)</th>
<th></th>
<th>83 (HOMO)</th>
<th></th>
<th>82 (HOMO-1)</th>
<th></th>
<th>81 (HOMO-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S6. Frontier molecular orbitals of the strongest oscillator strength transition at 227.78 nm for BHQ-OPh (N).

Figure S7. Comparison between low power 266-nm resonance Raman spectrum of BHQ-OPh in 1:1 acetonitrile/water and the DFT calculated Raman spectra of N(S\textsubscript{0}) and A(S\textsubscript{0}) of BHQ-OPh.
Figure S8. Comparison between low power 240-nm resonance Raman spectrum of BHQ-OPh in 1:1 acetonitrile/water (pH 5) solution and the DFT calculated Raman spectrum of N(S$_{0}$) of BHQ-OPh.

Figure S9. Simulated absorption spectrum for the T$_{1}$ state of BHQ-OPh (N) obtained from TD-DFT calculation at the level of B3LYP/6-311G**

Figure S10. Simulated absorption spectrum for the T$_{1}$ state of BHQ-OPh (A) obtained from TD-DFT calculation at the level of B3LYP/6-311G**
Figure S11. ns-TA spectra of BHQ-OPh in PBS (pH 7.4) after 266-nm excitation.

Figure S12. Fit of the ns-TA spectra in Fig. 4c to determine the rate constant for the decay of the T₁ state of BHQ-OPh (T).

Curve fit:
\[y = y_0 + A_1 e^{-(x-x_0)/t_1} \]

\[y_0 = 0.007030 \]
\[x_0 = 51.73233 \]
\[A_1 = 0.056530 \]
\[t_1 = 874.97694 \]

Figure S13. Comparison between high power 240-nm resonance Raman spectrum of BHQ-OPh in acetonitrile and the DFT calculated Raman spectra of the T₁ and S₀ states of BHQ-OPh (N).
Figure S14. ns-EM spectra of BHQ-OPh in PBS (pH 7.4) after 266-nm excitation.
Figure S15. fs-TA spectra of BHQ-OPh in 1:1 acetonitrile/PBS (pH 7.4) after 266-nm excitation. (a) The growth of the 355-nm absorption band within 1 ps results from excitation from the ground state BHQ-OPh (A). (b) Subsequently, there is a conversion with an emission band at 450 nm and an absorption band at 635 nm. Based on the assignments for the ns-EM spectra in 1:1 acetonitrile/PBS (pH 7.4) (Fig. 7), the emission band at 450 nm is attributed to the fluorescence from the S\textsubscript{1} state of BHQ-OPh (A). Hence, the conversion in (b) can be assigned to the formation of the S\textsubscript{1} state of BHQ-OPh (A). (c) The growing features at 410 and 528 nm are assigned to the T\textsubscript{1} state of BHQ-OPh (A) based on the ns-TA spectra (Fig. 4). The conversion in (c) indicates the intersystem crossing from the S\textsubscript{1} state of BHQ-OPh (A) to the T\textsubscript{1} state of BHQ-OPh (A).
Figure S16. Comparison between the high power 240-nm resonance Raman spectrum of BHQ-OPh in 1:1 acetonitrile/PBS (pH 7.4) and the DFT calculated Raman spectra of the T₁ and S₀ states of BHQ-OPh (A).

Figure S17. fs-TA spectra of BHQ-OPh in 1:1 acetonitrile/water (pH 5.0) after 266-nm excitation.
Scheme S1. Proposed mechanism of BHQ-OPh photoprocesses in acetonitrile.

Table S1. Selected electronic transition energies, oscillator strength in the region of 210-310 nm, and molecular orbital transitions for the strongest oscillator strength transition at 227.78 nm obtained from (U)B3LYP/6-311G** TD-DFT calculations for the neutral form of BHQ-OPh.

<table>
<thead>
<tr>
<th>Excitation Energy (nm)</th>
<th>Oscillator Strength</th>
<th>Molecular Orbital Transitions for 227.78 excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>211.42</td>
<td>0.0099</td>
<td></td>
</tr>
<tr>
<td>216.88</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>217.12</td>
<td>0.0043</td>
<td></td>
</tr>
<tr>
<td>222.38</td>
<td>0.1865</td>
<td></td>
</tr>
<tr>
<td>227.78</td>
<td>0.6085</td>
<td>81 -> 85, -0.27312</td>
</tr>
<tr>
<td>228.02</td>
<td>0.0001</td>
<td>81 -> 85, 0.10130</td>
</tr>
<tr>
<td>236.93</td>
<td>0.0227</td>
<td>82 -> 85, 0.47862</td>
</tr>
<tr>
<td>244.56</td>
<td>0.0002</td>
<td>83 -> 85, -0.20895</td>
</tr>
<tr>
<td>245.78</td>
<td>0.0262</td>
<td></td>
</tr>
<tr>
<td>258.94</td>
<td>0.0031</td>
<td></td>
</tr>
<tr>
<td>281.48</td>
<td>0.0549</td>
<td></td>
</tr>
<tr>
<td>283.71</td>
<td>0.0013</td>
<td></td>
</tr>
</tbody>
</table>