Electronic Supporting Information

Functional Gold Nanoparticles with Different Shapes for Photothermal Therapy and Drug Delivery

Nik N. M. Adnana,b, Y. Y. Chengc, Nur M. N. Ongb, Tuan T. Kamaruddinb, Eliza Rozlanb, Timothy W. Schmidtc, Hien T.T. Duonga,b,d,*, Cyrille Boyera,b

±equal contribution; *corresponding author

aAustralian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052

bCentre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052

cSchool of Chemistry, University of New South Wales, Sydney, Australia 2052

dSchool of Chemistry, University of Sydney, Australia 2052
Supplementary Figures

Figure S1. SEC traces of the polymers with DMAc as the eluent.

Figure S2. ¹H NMR spectra of (a) P(OEGMA)-b-P(VBA) and (b) P(OEGMA)-b-P(VBI/DOX). DOX conversion was calculated by the decreasing peak integral of aldehyde signal (10.0 ppm) from VBA.
Figure S3. UV-Vis spectra of P(OEGMA)-b-P(VBA) and P(OEGMA)-b-P(VBI/DOX) showing the appearance of DOX absorption peak ($\lambda_{\text{max}} = 480$ nm) and partial disappearance of RAFT chain end ($\lambda_{\text{max}} = 300$ nm)
Figure S4. Bathochromic shift in the plasmon resonance band of gold nanoparticles confirmed by UV-Vis spectroscopy indicating successful polymer grafting to the nanoparticles. Shape of gold nanoparticles (a) sphere (b) rod (c) star.
Figure S5. Photothermal heating of P(OEGMA)-b-P(VBA) functionalized gold nanoparticles with NIR light (continuous wave, $\lambda = 725\text{-}2500$ nm, 1.34 W cm$^{-2}$) for 3 min at different gold concentrations determined by TGA. Light source was prepared by utilizing a continuous white light source (260nm--2500nm), a 725 nm long-pass filter and a 40 mm path length cuvette filled with water placed after the long-pass filter to block any irradiation which would be strongly absorbed by water.