Electronic Supplementary Information

A Mild, Efficient and Catalyst-Free Thermoreversible Ligation System Based on Dithiooxalates

Kai Pahnke,^{a,b} Naomi L. Haworth,^c Josef Brandt,^{d,e} Uwe Paulmann,^f Christian Richter,^f Friedrich G. Schmidt,^f Albena Lederer, *^{d,e} Michelle L. Coote*^c and Christopher Barner-Kowollik*^{a,b}

^{*a*} Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany. E-mail: christopher.barner-kowollik@kit.edu

^b Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermannvon-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

^c ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia. E-mail: michelle.coote@anu.edu.au

^d Leibniz-Institut für Polymerforschung Dresden, Hohe Str. 6, 01069 Dresden, Germany. E-Mail: lederer@ipfdd.de

^e Technische Universität Dresden, 01062 Dresden, Germany.

^{*f*} Evonik Industries AG, Paul-Baumann-Strasse 1, 45764 Marl, Germany.

Content

1.	Materials and Methods	3
a) Materials	. 3
b) Characterization Techniques	. 3
c)) Synthesis of MTTA	. 4
ď) Synthesis of Cp ₂ P'BuA	. 7
e) Synthesis of Diels-Alder adducts of MTTA with diverse Dienes	. 7
	MTTA + Cp	. 7
	MTTA + 2,3-Dimethyl-1,3-butadiene	. 9
	MTTA + Sorbic Alcohol	10
	MTTA + Ethyl Sorbate	11
	MTTA + IPDI-SA	12
2.	Evaluation of UV/Vis Kinetics	13
3.	TD SEC Investigations	15
4.	Computational Methodology & Data	17
	General Methodology	17
	% Debonding Curves	22
	8	
	Detailed Computational Data	25
	Detailed Computational Data	25 25
	Detailed Computational Data Furan Cyclopentadiene	25 25 25 27
	Detailed Computational Data Furan Cyclopentadiene	25 25 27 32
	Detailed Computational Data Furan Cyclopentadiene	25 25 27 32 34
	Detailed Computational Data Furan Cyclopentadiene	25 25 27 32 34 39
	Detailed Computational Data Furan Cyclopentadiene	25 25 27 32 34 39 41

1. Materials and Methods

a) Materials

Stabilized *tert*-butyl acrylate was freed from inhibitor via a short column of basic aluminum oxide. Cyclopentadiene was freshly cracked at 180 °C from dicyclopentadiene. All other chemicals were used as supplied by the manufacturers.

b) Characterization Techniques

SEC of polymeric samples was carried out on a Polymer Laboratories/Varian PL-GPC 50 Plus system, comprising an autosampler, a Polymer Laboratories 5.0 µm bead-size guard column (50 x 7.5 mm²), followed by three PL columns and a differential refractive index detector. Measurements were performed in THF at 35 °C with a flow rate of 1 ml·min⁻¹. The SEC system was calibrated using linear poly(methyl methacrylate) standards ranging from 800 g·mol⁻¹ to $1.6 \cdot 10^6$ g·mol⁻¹ (MHKS parameters: K = $12.8 \cdot 10^{-5}$ dL g⁻¹, $\alpha = 0.69$)¹ or polystyrene standards ranging from 500 g·mol⁻¹ to $2.5 \cdot 10^6$ g·mol⁻¹ (K = $14.1 \cdot 10^{-5}$ dL g⁻¹, $\alpha = 0.70$).²

The temperature dependent SEC (TD SEC) experiments were carried out on a PL GPC 220 high temperature chromatograph (Agilent Technologies, US), using DMAc (+ 3 g/L LiCl) as a solvent at a flow rate of 1 mL/min on an ABOA DMAc-phil column (AppliChrom, Germany).

¹H NMR spectra were measured on a Bruker Avance III 400 spectrometer with a CryoProbe at 400 MHz in CDCl₃ for standard measurements and toluene- d_8 in a pressure tube for measurements at elevated temperatures (HT NMR). After the stabilization of an adjusted temperature within minutes, the establishment of the equilibrium was ensured by repeated additional measurements with 16 scans before and after the actual measurement with 128 scans until (typically immediately)

no difference could be determined in the measured data anymore. The recyclability of the samples was checked after cooling to ambient temperature overnight. A baseline correction was applied.

Mass spectra were recorded on a Q-Exactive (Orbitrap) mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a HESI II probe. The instrument was calibrated in the m/z range of 74-1822 via premixed calibration solutions (Thermo Scientific). A constant spray voltage of 4.7 kV and a dimensionless sheath gas of 5 were applied. The capillary temperature and the S-lens RF level were set to 320 °C and 62.0, respectively. The samples were dissolved with a concentration of 0.05 mg·mL⁻¹ in a mixture of THF and MeOH (3:2) containing 100 μ mol of sodium triflate and infused with a flow of 5 μ L·min⁻¹.

UV/Vis measurements were carried out on a Varian Cary 50 Bio spectrophotometer. Spectra were recorded between 300 and 800 nm and kinetics were measured at 500 nm in acetonitrile or toluene in a 10 mm path length cell with a baseline correction regarding the solvent.

Additional UV/Vis measurements of single spectra under similar conditions were carried out on an OceanOptics USB4000 spectrometer with a USB-ISS-UV-Vis detecting unit.

c) Synthesis of MTTA

A literature procedure was adopted and refined to generate the desired dithiooxalate dilinker.^{3, 4} Ethylene glycol (124.1 g, 2.0 mol) and chloracetic acid (472.5 g, 5.0 mol) were dissolved in 1 L

xylol, Amberlyst-15 (16.0 g) was added and the reaction mixture was heated to 165 °C under reflux in a Dean-Stark apparatus for 4 h. After cooling, Amberlyst was separated via decantation and the reaction mixture was washed three times with saturated sodium carbonate solution (2x250 mL, 1x70 mL) and two times with brine (250 mL). The organic phase was dried over magnesium sulfate and the solvent was removed under reduced pressure. The product was further purified via vacuum distillation at 170 °C, yielding crystalline ethane-1,2-diyl bis(2-chloroacetate) (357.1 g, 83 %).

Subsequently, triethylamine (282 g, 2.79 mol) was added to a suspension of sulphur (60 g, 1.86 mol) in DMF (1.1 L) under nitrogen. Slowly, a solution of ethane-1,2-diyl bis(2-chloroacetate) (100 g, 0.47 mol) in 100 mL DMF (dry) was added dropwise over 1 h to allow the reaction mixture to reach 40 °C. The mixture was stirred for an additional 3 h at ambient temperature and then cooled to 10 °C. Methyl iodide (145 g, 64 mL, 1.02 mol) was added dropwise within 1 h while keeping the temperature of the reaction mixture ≤ 10 °C, whereafter the mixture was stirred for an additional 2 h at 10 °C. The crude mixture was diluted with methyl *tert*-butyl ether (5 L) and the emerging yellow-orange precipitate was filtered-off via a short column of silica. The filtrate was washed two times each with 0.5 M sulphuric acid (1.6 L), water (1.6 L) and a 4:1 mixture of brine and saturated sodium hydrogen carbonate solution (1.2 L). The organic phase was dried over magnesium sulfate und the solvent was removed under reduced pressure to yield the dark violet oily solid product (119.7 g, 83 %). Further purification can be achieved via flash chromatography (cyclohexane/ethylacetate 8:1, silica, $R_f = 0.38$). Although the product seems to be stable under

ambient conditions and also – at least for limited time scales – at elevated temperatures, a storage in the freezer is recommended due to its reactivity and literature reports of smaller, fully liquid dithiooxalate species.⁵

ESI-MS (M+Na)⁺ C₈H₁₀O₄S₄+Na⁺ theoretical: 320.9360 Da, experimental: 320.9370 Da

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 4.64 (s, 4H, -O-CH₂-), 2.68 (s, 6H, -S-CH₃).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 215.75 (-*C*=S), 160.02 (-*C*=O), 64.20 (-O-*C*H₂-), 19.75 (-*C*H₃).

Fig. S1. ¹H NMR (400 MHz, CDCl₃) of **MTTA** before (top) and after (middle) column chromatography and ¹³C NMR (bottom, 100 MHz, CDCl₃) of **MTTA**.

Fig. S2. UV/Vis spectra of the characteristic C=S double bond absorbance of MTTA (10 mg mL⁻¹ in MeCN) at 500 nm.

d) Synthesis of Cp₂P^tBuA

Synthesis of Cp₂P'BuA was carried out according to a literature procedure earlier established by us.^{6, 7} $M_{\rm n} = 6000$ g mol⁻¹, D = 1.12 (PMMA calibration, K = 19.70 · 10⁻⁵ dL g⁻¹, $\alpha = 0.66$).⁸

e) Synthesis of Diels-Alder adducts of MTTA with diverse Dienes

MTTA + Cp

In a typical procedure, MTTA (20 mg, 0.67 mmol \triangleq 0.13 mmol dithiooxalate end-groups) was dissolved in 1 mL acetonitrile, transferred into a UV/Vis cuvette and heated to the desired reaction temperature (25 or 50 °C). Cyclopentadiene (depending on the desired reaction conditions 1.2 eq.,

13.3 μ L, 0.16 mmol or 5.0 eq., 55.4 μ L, 0.67 mmol) was added and the reaction mixture was shaken to guarantee good intermixture. The reaction process was tracked immediately in a UV/Vis spectrometer via the decreasing C=S double bond absorbance at 500 nm. Subsequently, the solvent and the excess of cyclopentadiene was evaporated and the slightly yellow product was characterized without further purification.

ESI-MS (M+Na)⁺ C₁₈H₂₂O₄S₄+Na⁺ theoretical: 453.0299 Da, experimental: 453.0315 Da

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 6.54 (dd, 1 H, H^a), 6.43 (dd, 1 H, H^{a'}), 6.15 (dd, 1 H, H^b), 6.04 (dd, 1 H, H^{b'}), 4.53-4.20 (m, 4 H, H^c), 4.16 (s, 1 H, H^d), 4.05 (s, 1 H, H^{d'}), 3.90 (s, 1 H, H^c), 3.60 (s, 1 H, H^{c'}), 2.33-2.19 (m, 6 H, H^{f,f'}), 2.01-1.68 (m, 3 H, H^g), 1.58-1.22 (m, 3 H, H^{g'}).

Fig. S3. ¹H NMR (400 MHz, CDCl₃) of the DA adduct of MTTA and cyclopentadiene.

MTTA + 2,3-Dimethyl-1,3-butadiene

ESI-MS (M+Na)⁺ C₂₀H₃₀O₄S₄+Na⁺ theoretical: 485.0925 Da, experimental: 485.0941 Da

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 4.50-4.31 (m, 4H, H^a), 3.28+2.84 (ABX, 2H, H^b), 2.88+2.44 (ABX, 2H, H^c), 2.18 (s, 6 H, H^d), 1.72 (s, 6 H, H^e), 1.69 (s, 6 H, H^{e'}).

Fig. S4. ¹H NMR (400 MHz, CDCl₃) of the DA adduct of MTTA and 2,3-dimethyl-1,3butadiene.

MTTA + Sorbic Alcohol

ESI-MS (M+Na)⁺ C₂₀H₃₀O₆S₄+Na⁺ theoretical: 517.0823 D Da, experimental: 517.0843 Da

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 5.92-5.59 (m, 4 H, H^a), 4.53-4.29 (m, 4 H, H^b), 4.11-3.53 (m, 6 H, H^{c,c',d,d'}), 3.22-2.68 (m, 2 H, H^{e,e'}), 2.24-2.16 (m, 6 H, H^{f,f'}), 1.39-1.12 (m, 6 H, H^{g,g'}).

Fig. S5. ¹H NMR (400 MHz, CDCl₃) of the DA adduct of MTTA and sorbic alcohol; x: residual sorbic alcohol.

MTTA + Ethyl Sorbate

ESI-MS (M+Na)⁺ C₂₄H₃₄O₈S₄+Na⁺ theoretical: 601.1034 Da, experimental: 601.1062 Da

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 5.97-5.76 (m, 4 H, H^a), 4.48-4.35 (m, 4 H, H^b), 4.25-4.10 (m, 4 H, H^{c,c'}), 4.13-3.95 (m, 2 H, H^{d,d'}), 3.71-3.52 (m, 2 H, H^{e,e'}), 2.19+2.16 (s, 6 H, H^{f,f'}), 1.39-1.19 (m, 12 H, H^{g,g',h}).

Fig. S6. ¹H NMR (400 MHz, CDCl₃) of the DA adduct of MTTA and ethyl sorbate.

Fig. S7. ¹H NMR (400 MHz, CDCl₃) of IPDI-SA (top), MTTA (middle) and their step-growth adduct (bottom).

Isophorone bis(sorbic carbamate) (IPDI-SA) was provided by Evonik Industries. From Fig. S7, it can be seen that all diene groups of the IPDI-SA have reacted in a Diels–Alder reaction with the MTTA dilinker. The implied step-growth behavior is evidenced via SEC in Fig. S8. The degree of polymerization is calculated as:

$$DP_n = \frac{M_n(DA - Polymer)}{(M_n(Macromonomer) + M(Dilinker))/2}$$
 Equation S1

Although the employed SEC calibration via polystyrene standards is likely inadequate for the material at hand, the method allows for a convenient visualization of the step-growth. The

assumedly low DP_n as well as the residual starting material visible in the SEC trace (Fig. S8) are probably a result of a non-functional IPDI species and is not arising due to limited reactivity, as no dienes can be identified via NMR anymore (Fig. S7).

Fig. S8. SEC trace of IPDI-SA and its step-growth adduct with equimolar amounts of MTTA (20 mg mL⁻¹ in MeCN), measured in THF at 35 °C.

2. Evaluation of UV/Vis Kinetics

For an evaluation of the reaction rates, the time dependent reactant concentrations were calculated via the known starting concentrations and the normalized time dependent absorbance of the C=S double bond at 500 nm, which decreases with ongoing hetero Diels–Alder reaction of the thiocarbonyl species with dienes. Via the time dependent reactant concentrations and the

assumption of a 2nd order reaction $(A + B \to C)$ without retro reaction at the given reaction temperatures (as computationally predicted), reaction rate coefficients k are accessible via standard textbook equations:⁹ for $[A]_0 \neq [B]_0$, k is the slope of $ln\left(\frac{[B]/[B]_0}{[A]/[A]_0}\right) \cdot \frac{1}{([B]_0 - [A]_0)}$ vs. t, whereas for $[A]_0 = [B]_0$, k is the slope of $\frac{1}{[A]} - \frac{1}{[A]_0}$ vs. t. A typical graph can be seen in Fig. S9.

Fig. S9. Linear fit to determine k as the slope of $ln\left(\frac{[B]/[B]_0}{[A]/[A]_0}\right) \cdot \frac{1}{([B]_0 - [A]_0)}$ vs. t for the Diels– Alder reaction of 1.2 eq. DMBD with MTTA (20 mg mL⁻¹ in MeCN).

The activation energies (E_a) were determined via the subtraction of the two logarithmic forms of the Arrhenius equations for the rate coefficients as determined for 25 °C (298.15 K) and 50 °C (323.15 K) with *R* being the universal gas constant:⁹ $E_a = R \cdot \ln\left(\frac{k_1}{k_2}\right) \cdot \frac{T_1 \cdot T_2}{T_1 - T_2}$.

3. TD SEC Investigations

40 mg of the MTTA-P'BuA DA polymer were dissolved in 125 μ L DMAc (+ 3 g/L LiCl, c(MTTA) = 13.5 mg mL⁻¹). High concentrations are necessary in order to observe repolymerization reactions within reasonable time frames. It is, however, not possible to directly measure at such concentrations in the SEC instrument. Hence, a small volume (< 10 μ L) of the concentrated solution was diluted in 1 mL DMAc (+ 3 g/L LiCl) and then measured. To achieve readily comparable chromatograms, all measurements were performed at 70 °C. At this temperature, DMAc has a sufficiently low viscosity and the temperature is low enough to avoid significant rDA reaction during the analysis. As no kinetics were measured via TD SEC, relatively long repolymerization times were chosen to assure high conversions even at lower concentrations in comparison to the UV/V experiments. In order to maximize the stability of the MTTA linker at high temperatures, the concentrated solution was kept under nitrogen atmosphere. The entire analysis scheme is summarized in the following table:

	Concentrated Solution	Sample Name
1.	At ambient temperature	$DA adduct MTTA + Cp_2P^tBuA$
2.	30 min at 100 °C	1. rDA (100 °C)
3.	1 d at ambient temperature	I.DA
4.	30 min at 100 °C	2. rDA (100 °C)
5.	1 d at ambient temperature	2.DA
6.	30 min at 120 °C	3. rDA (120 °C)
7.	2 d at ambient temperature	<i>3.DA</i>

Averaging a broad molar mass distribution (MMD) always comes along with the risk of not taking into account or underestimating small changes in particular areas of the chromatogram. In theory, the dispersity D_M of any step-growth polymer increases with the monomer conversion from 1.0 to 2.0. Hence, the broadness of a distribution is due to the nature of the polymerization reaction. Both dispersity and degree of polymerization (and thus the number averaged molar mass (M_n)) are related to the conversion:

$$DP_{n} = \frac{1}{1 - X}$$
 Equation S2 (Carothers Equation)
 $D_{M} = 1 + DP_{n}$ Equation S3

These correlations clearly state that with an increase in monomer conversion (DA reaction), both M_n and D_M have to increase and vice versa. Consequently, those values can be monitored to follow the progress of the thermoreversible (r)DA reaction. In Fig. S10, M_n , the monomer conversion X (as obtained from Equation S2) and D_M are displayed.

Fig. S10. Evolution of M_n , X and \mathcal{D}_M during multiple rDA/DA cycles.

As consistent trends can be observed, the data set appears to be reliable. The accuracy (in terms of reproducibility) of the M_n determination is high (±250 g/mol), but only molar masses relative to polystyrene standards were calculated. Accordingly, the data does not allow to calculate reliable quantitative conversions, but enables displaying qualitative trends, as all measurements were performed under identical conditions.

4. Computational Methodology & Data

General Methodology

Gibbs free energies for the Diels–Alder reactions between a monofunctional MTTA species (MTTA_{half}) and several dienes were determined via standard *ab initio* calculations. The reactions between the difunctional full MTTA (MTTA_{full}) and two successive cyclopentadiene molecules and two successive sorbic alcohol molecules were also modelled. The reactants and products were considered in their optimized minimum energy conformations in the presence of a solvent field (acetonitrile), modeled using the SMD/M05-2X/6-31G(d) method.¹⁰⁻¹³ As an example, in the Diels–Alder reaction of MTTA_{half} with one sorbic alcohol molecule, there are four structural isomers (Fig. S11, top row).

Fig. S11. Screened isomers and ring conformations for the reaction of MTTA_{half} with sorbic alcohol, highlighted: lowest energy geometry.

For systems where the ring formed by the Diels–Alder reaction is flexible, multiple ring conformations can also be adopted (Fig. S11, bottom row). These can place different substituents in axial and equatorial positions around the ring, allowing different intramolecular interactions to form within the molecule and resulting in different stabilities for the conformers. Two possible "chair-like" ring conformations were investigated for each structural isomer (shown with the sulfur "up" or "down" in Fig. S11). Chemical knowledge and previous experience indicates that "boat-like" conformations are likely to be higher in energy. Additionally, bond rotation leads to different molecular conformations. In our study, we screened for conformers with the bonds (a) (Fig. S12) being rotated in increments of 120°, (b) (Fig. S12) being rotated in increments of 60° and (c) not being rotated due to experience from other studies showing that their configuration as described in Fig. S12 are consistently more stable.

Fig. S12. Bond rotation conformer screening with (a) being rotated in increments of 120°, (b) of 60° and (c) not being rotated due to previous studies.

For systems with the conformational spaces containing a very large number of potential structures, an Energy-Directed Tree Search algorithm (EDTS) was employed to select which conformers to investigate in detail.¹⁴

Partition functions and hence entropies and thermal corrections to the energies were calculated using standard textbook formulae for the statistical thermodynamics of an ideal gas under the harmonic oscillator rigid rotor approximation (T = 298 K). Justification for the use of solution phase properties for this purpose can be found in reference ¹⁵. Vibrational frequencies were scaled

using recommended scaling factors for the calculation of zero point energies, thermal corrections and entropies.¹⁶ The quasi-harmonic oscillator approximation was also applied to minimize the potentially large effects of errors in very low frequency vibrations.¹⁵ Approximate M05-2X solution-phase Gibbs free energies (G°_{soln}) could hence be calculated and compared by the EDTS algorithm to identify the most stable conformation for each species.

In order to calculate equilibrium constants and $T_{20\%}$ debonding, more accurate values of G°_{soln} were determined at a range of temperatures for the most stable conformation of each species. These were obtained using accurate Gibbs free energies calculated in the gas phase, which were combined with free energies of solvation via standard thermodynamic cycles. Gas phase energies were calculated using the high-level composite G3(MP2) level of theory.¹⁷ All geometries were re-optimized in the gas phase using M05-2X/6-31G* for this purpose, and gas phase vibrational frequencies were also calculated. Gas phase partition functions and hence entropies and thermal corrections to the energies were determined at the temperatures of interest, as described above, and combined with the G3(MP2) energies to give $G^{o}_{gas}(T)$. Temperature dependent free energies of solvation ($\Delta G_{solv}(T)$) in acetonitrile were determined based on the solution phase geometries using COSMO(RS)^{18, 19}. It was also important to consider the geometric relaxation associated with solvation; this was approximated as the energy difference between the gas and solution phase geometries, calculated in the solution phase (E_{relax}).^{20, 21} Solution phase free energies could hence be calculated according to Equation S4:

$$G_{soln}^{o}(T) = G_{gas}^{o}(T) + \Delta G_{solv}(T) - E_{relax} + \Delta G_{conc}^{o}(T)$$
 Equation S4

where $\Delta G_{conc}^{o}(T)$ is a phase change correction.²² All calculations were carried out using the Gaussian 09,²³ Molpro 2012.1^{24, 25} or ADF 2014.01²⁶ software packages.

For each reaction, the equilibrium constants were calculated as a function of temperature using the Gibbs free energies via the standard textbook equation. These equilibrium constants were then used to calculate the extent of debonding, and hence the temperature for 20 % debonding ($T_{20\%}$ debonding) as follows. For the reactions modelled as 1-step processes (i.e. diene + MTTA_{half}), Equation S5 was used:²⁷

% debonding =
$$\left(1 - \frac{2K[A]_0 + 1 - \sqrt{4K[A]_0 + 1}}{2K[A]_0}\right) \times 100\%$$
 Equation S5

where: $[A]_0$ is the starting concentration of the Diels–Alder product (diene-MTTA_{half}). For the small molecule NMR experiments, the appropriate value of $[A]_0$ is 0.05 M (i.e., twice the concentration of diene-MTTA-diene product), and hence $T_{20\% \text{ debonding}}$ occurs when $\log(K) = 2.6$. For the reactions modelled as (more experimentally realistic) 2-step processes, it is necessary to solve Equations S6 and S7 simultaneously for pairs of K₁ and K₂ (i.e. each system at each temperature) to yield the values of *x* and [Cp].²⁸

$$\frac{1}{K_1} = \frac{(2x - [Cp])[Cp]}{[A']_0 - x}$$
Equation S6

$$\frac{1}{K_2} = \frac{([Cp] - x)[Cp]}{2x - [Cp]}$$
 Equation S7

In these equations, K_1 is the equilibrium constant for the first reaction of the diene with MTTA, and K_2 is the equilibrium constant for the second reaction. Both are defined in the bonding (Diels– Alder) direction, as is K in equation S3 above. The value of $[A']_0$ is the starting concentration of the doubly reacted MTTA (i.e. the diene-MTTA-diene product) and has the value 0.025 M. [Cp] is the concentration of the diene (either cyclopentadiene or sorbic alcohol depending on the system) and *x* is defined such that the concentration of the doubly reacted MTTA at equilibrium $[A'] = [A']_0 - x$. The extent of debonding is given by:

$$\%$$
 debonding = $\frac{[Cp]}{2[A']_0} \times 100\%$

Equation S8

For each system, % debonding was calculated as a function of temperature to identify $T_{20\%}$ debonding.

% Debonding Curves

 $T_{20\% \text{ debonding}} = 105 \text{ }^{\circ}\text{C}$

 $T_{20\% \text{ debonding}} = -169 \text{ }^{\circ}\text{C}$

 $T_{20\% \text{ debonding}} = 427 \text{ }^{\circ}\text{C}$

 $T_{20\% \text{ debonding}} = 225 \text{ }^{\circ}\text{C}$

Detailed Computational Data

Furan

<u>Furan + MTTA_{half}</u>($T_{logK=2.6} = -169$ °C)

Key thermodynamic parameters and equilibrium constants in acetonitrile as a function of temperature, using M05-2X/6-31G* geometries and frequencies.

T (°C)	log K	ΔG^* soln	$\Delta H(g)$	$\Delta S(g)$	$\Delta\Delta G^*$ solv
		kJ mol ⁻¹	kJ mol ⁻¹	J mol ⁻¹ K ⁻¹	kJ mol ⁻¹
-250	31.1	-13.8	-25.8	-164.8	7.1
-225	12.8	-11.8	-26.5	-185.4	5.1
-200	7.2	-10.1	-27.0	-193.8	3.5
-150	1.3	-3.0	-27.6	-200.3	1.1
-100	-1.1	3.7	-27.9	-202.1	-0.8
-50	-2.5	10.8	-27.9	-202.3	-2.3
0	-3.5	18.1	-27.8	-201.7	-3.5
25	-3.8	21.8	-27.7	-201.3	-3.9
50	-4.1	25.5	-27.5	-200.8	-4.4
100	-4.6	33.0	-27.1	-199.8	-5.1
150	-5.0	40.5	-26.7	-198.6	-5.7
200	-5.3	48.0	-26.1	-197.4	-6.2
250	-5.5	55.5	-25.6	-196.2	-6.6

Species	Entropy (298K) / J mol ⁻¹ K ⁻ 1	H ²⁹⁸ -H ⁰	ZPVE	HLC	<i>E</i> [M05-2X/ 6-31G* SMD, gas geom]	E[M05-2X/ 6-31G* SMD, sol geom]	<i>E</i> [MP2/ 6-31G*]	<i>E</i> [MP2/ G3MP2Large]	<i>E</i> [CCSD(T)/ 6-31G*]
Furan	273.3	0.004733	0.068875	-0.122369	-229.998527	-229.998551	-229.309880	-229.561891	-229.363438
MTTA half	402.6	0.010476	0.097745	-0.216499	-1102.771496	- 1102.771707	-1100.815553	-1101.328463	-1100.911710
Furan – MTTA half	474.6	0.014218	0.170380	-0.338868	-1332.783794	- 1332.784513	-1330.137845	-1330.903460	-1330.287758
Enocioc	Eº	H ²⁹⁸	G G	_{gas} (298K)	⊿G _{solv} (298K)	E _{relax} [M06-2X/	G [°] sol (298K)		
species	[G3MP2,CC]	[G3MP2	2,CC] [G	3MP2,CC]	[COSMO(RS)]	6-31G*, SMD]	[G3MP2,CC]		
Furan	-229.668943	-229.664	4210 -22	29.695248	-0.006368	-0.000024	-229.698573		
MTTA half	-1101.543374	-1101.53	2898 -11	01.578621	-0.012714	-0.000211	-1101.58810	5	
Furan – MTTA half	-1331.221861	-1331.20	7643 -13	31.261541	-0.020586	-0.000718	-1331.278390)	

Components of Solution Free Energy Calculations- values in E_h unless otherwise specified

Cyclopentadiene

 $\underline{Cp + MTTA_{half}}(T_{logK=2.6} = 166 \text{ °C})$

Key thermodynamic parameters and equilibrium constants in acetonitrile as a function of temperature, using M05-2X/6-31G* geometries and frequencies.

T (°C)	log K	ΔG^* soln	$\Delta H(g)$	$\Delta S(g)$	$\Delta\Delta G^*$ solv
		kJ mol ⁻¹	kJ mol ⁻¹	J mol ⁻¹ K ⁻¹	kJ mol ⁻¹
0	9.1	-47.6	-98.5	-206.6	1.7
25	7.7	-43.8	-98.5	-206.6	1.2
50	6.5	-40.0	-98.5	-206.4	0.7
100	4.5	-32.4	-98.3	-205.9	-0.2
150	3.0	-24.7	-98.0	-205.2	-0.9
200	1.9	-17.0	-97.6	-204.4	-1.5
250	0.9	-9.3	-97.2	-203.5	-2.1

 $\underline{Cp + MTTA_{full}}(T_{logK=2.6} = 113 \text{ °C})$

Key thermodynamic parameters and equilibrium constants in acetonitrile as a function of temperature, using M05-2X/6-31G* geometries and frequencies.

T (°C)	log K	ΔG^* soln	$\Delta H(g)$	$\Delta S(g)$	$\Delta\Delta G^*$ solv
		kJ mol ⁻¹	kJ mol ⁻¹	J mol ⁻¹ K ⁻¹	kJ mol ⁻¹
0	9.0	-46.9	-108.7	-214.5	10.0
25	7.2	-41.3	-106.9	-214.6	9.3
50	5.7	-35.4	-104.9	-214.6	8.7
100	3.2	-22.9	-100.1	-214.3	7.6
150	1.2	-9.5	-94.4	-213.7	6.7
200	-0.5	4.7	-88.0	-212.9	6.0
250	-1.9	19.5	-80.8	-212.1	5.3

$\underline{Cp + Cp - MTTA_{full}}(T_{logK=2.6} = 87 \text{ °C})$

ONIOM Core (Cp-MTTA_{half}):

Key thermodynamic parameters and equilibrium constants in acetonitrile as a function of temperature, using M05-2X/6-31G* geometries and frequencies.

T (°C)	log K	ΔG^* soln	$\Delta H(g)$	$\Delta S(g)$	$\Delta\Delta G^*$ solv
		kJ mol ⁻¹	kJ mol ⁻¹	J mol ⁻¹ K ⁻¹	kJ mol ⁻¹
0	7.4	-38.5	-93.5	-209.1	4.8
25	5.8	-32.9	-91.6	-209.1	4.1
50	4.4	-27.1	-89.5	-209.0	3.6
100	2.1	-14.8	-84.7	-208.5	2.6
150	0.2	-1.6	-78.9	-207.9	1.7
200	-1.4	12.3	-72.4	-207.1	1.0
250	-2.7	26.8	-65.2	-206.2	0.4

Species	Entropy (298K) / J mol ⁻¹ K ⁻ 1	H ²⁹⁸ -H ⁰	ZPVE	HLC	E[M05-2X/ 6-31G* SMD, gas geom]	E[M05-2X/ 6-31G* SMD, sol geom]	<i>E</i> [MP2/ 6-31G*]	<i>E</i> [MP2/ G3MP2Large]	<i>E</i> [CCSD(T)/ 6-31G*]
Ср	280.9	0.005225	0.090763	-0.122369	-194.080257	-194.080278	-193.425083	-193.647864	-193.494232
MTTA half	402.6	0.010476	0.097745	-0.216499	-1102.771496	-1102.771707	-1100.815553	-1101.328463	-1100.911710
MTTA	576.2	0.019177	0.177408	-0.423585	-2204.360345	-2204.360849	-2200.474347	-2201.480435	-2200.659468
Cp – MTTA - half	477.0	0.014411	0.194153	-0.338868	-1296.894881	-1296.895043	-1294.288452	-1295.024835	-1294.447126
Cp – MTTA (as product)	636.9	0.022724	0.274385	-0.545954	-2398.487115	-2398.487761	-2393.954324	-2395.184495	
Cp – MTTA (as reactant)	636.9	0.022724	0.274385	-0.545954	-2398.487115	-2398.487761	-2393.954324	-2395.184495	
Cp – MTTA-CP	703.2	0.026632	0.370795	-0.668323	-2592.609090	-2592.609820	-2587.428620	-2588.882540	

Components of Solution Free Energy Calculations- values in E_h unless otherwise specified

Species	<i>Е</i> ⁰ [G3MP2,CC]	Н ²⁹⁸ [G3MP2,CC]	Ggas (298K) [G3MP2,CC]	⊿G₅о/v (298K) [COSMO(RS)]	E _{relax} [M06-2X/ 6-31G*, SMD]	G° _{sol} (298К) [G3MP2,CC]
Ср	-193.748619	-193.743394	-193.775294	-0.005554	-0.000021	-193.777808
MTTA half	-1101.543374	-1101.532898	-1101.578621	-0.012714	-0.000211	-1101.588105
MTTA	-2201.310414	-2201.291237	-2201.356670	-0.026363	-0.000504	-2201.379510
Cp – MTTA half	-1295.328224	-1295.313813	-1295.367977	-0.017812	-0.000162	-1295.382607
Cp – MTTA (as product)	-2395.098225	-2395.075501	-2395.147830	-0.028377	-0.000646	-2395.172542
Cp – MTTA (as reactant)	-2394.812236	-2394.789511	-2394.861841	-0.028377	-0.000646	-2394.886553
Cp – MTTA-CP	-2588.594573	-2588.567941	-2588.647796	-0.032355	-0.000730	-2588.676402

2,3-Dimethly-1,3-butadiene

<u>DMBD + MTTA_{half}</u> ($T_{logK=2.6} = 427 \text{ °C}$)

Key thermodynamic parameters and equilibrium constants in acetonitrile as a function of temperature, using $M05-2X/6-31G^*$ geometries and frequencies.

T (°C)	log K	ΔG^* soln	$\Delta H(g)$	$\Delta S(g)$	$\Delta\Delta G^*$ solv
		kJ mol ⁻¹	kJ mol ⁻¹	J mol ⁻¹ K ⁻¹	kJ mol ⁻¹
0	17.5	-91.3	-133.2	-188.4	-3.4
25	15.4	-88.1	-133.1	-188.2	-4.0
50	13.7	-84.8	-133.1	-188.0	-4.5
100	10.9	-78.2	-132.9	-187.6	-5.5
150	8.8	-71.4	-132.7	-187.0	-6.2
200	7.1	-64.7	-132.4	-186.4	-6.9
250	5.8	-57.9	-132.1	-185.7	-7.4
300	4.7	-51.1	-131.7	-184.9	-7.9
350	3.7	-44.3	-131.2	-184.1	-8.3

Species	Entropy (298K) / J mol ⁻¹ K ⁻ 1	H ²⁹⁸ -H ⁰	ZPVE	HLC	<i>E</i> [M05-2X/ 6-31G* SMD, gas geom]	<i>E</i> [M05-2X/ 6-31G* SMD, sol geom]	<i>E</i> [MP2/ 6-31G*]	E[MP2/ G3MP2Large]	<i>E</i> [CCSD(T)/ 6-31G*]
DMBD	332.3	0.008107	0.13952	7 -0.160021	-234.586554	-234.586578	-233.762827	-234.059894	-233.857046
MTTA half	402.6	0.010476	0.09774	5 -0.216499	-1102.771496	- 1102.771707	-1100.815553	-1101.328463	-1100.911710
DMBD – MTTA half	546.7	0.018040	0.24164	7 -0.376520	-1337.419616	- 1337.420174	-1334.639905	-1335.449314	-1334.823870
Species	E ^o	H ²⁹⁸	3	G _{gas} (298K)	⊿G solv (298K)	E _{relax} [M06-2X/	G° _{sol} (298K)		
openie	[G3MP2,CC]	[G3MP2	2,CC]	[G3MP2,CC]	[COSMO(RS)]	6-31G*, SMD]	[G3MP2,CC]		
DMBD	-234.174607	-234.16	6501 -	234.204230	-0.004580	-0.000023	-234.205768	3	
MTTA half	-1101.543374	-1101.53	- 2898	1101.578621	-0.012714	-0.000211	-1101.58810	5	
DMBD – MTTA half	-1335.768151	-1335.75	60112 -	1335.812190	-0.018814	-0.000559	-1335.82742	7	

Components of Solution Free Energy Calculations- values in E_h unless otherwise specified

Sorbic Alcohol

<u>Sorbic Alcohol + MTTA_{half} ($T_{logK=2.6} = 240 \ ^{\circ}C$)</u>

Key thermodynamic parameters and equilibrium constants in acetonitrile as a function of temperature, using M05-2X/6-31G* geometries and frequencies.

T (°C)	log K	ΔG^* soln	$\Delta H(g)$	$\Delta S(g)$	$\Delta\Delta G^*$ solv
		kJ mol ⁻¹	kJ mol ⁻¹	J mol ⁻¹ K ⁻¹	kJ mol ⁻¹
0	12.0	-62.9	-134.0	-234.9	10.8
25	10.4	-59.6	-134.1	-235.2	9.1
50	9.1	-56.0	-134.1	-235.3	7.6
100	6.8	-48.5	-134.1	-235.1	5.2
150	5.0	-40.4	-133.9	-234.6	3.4
200	3.5	-31.9	-133.6	-233.9	2.1
250	2.3	-23.3	-133.2	-233.1	1.0
300	1.3	-14.5	-132.7	-232.3	0.1
350	0.5	-5.7	-132.2	-231.4	-0.6
400	-0.2	3.1	-131.7	-230.6	-1.2

<u>Sorbic Alcohol + MTTA_{full} ($T_{logK=2.6} = 340$ °C)</u>

Key thermodynamic parameters and equilibrium constants in acetonitrile as a function of temperature, using M05-2X/6-31G* geometries and frequencies.

T (°C)	log K	ΔG^* soln	$\Delta H(g)$	$\Delta S(g)$	$\Delta\Delta G^*$ solv
		kJ mol ⁻¹	kJ mol ⁻¹	J mol ⁻¹ K ⁻¹	kJ mol ⁻¹
0	16.8	-87.6	-162.5	-243.0	15.3
25	14.8	-84.2	-162.6	-243.3	13.5
50	13.0	-80.6	-162.6	-243.3	11.9
100	10.2	-72.9	-162.5	-243.1	9.3
150	8.0	-64.5	-162.3	-242.6	7.4
200	6.2	-55.8	-162.0	-241.8	5.9
250	4.7	-46.8	-161.6	-241.0	4.8
300	3.4	-37.7	-161.1	-240.1	3.9
350	2.4	-28.5	-160.6	-239.2	3.1
400	1.5	-19.3	-160.0	-238.3	2.4

<u>Sorbic Alcohol + Sorbic Alcohol-MTTA_{full} (*T*_{logK=2.6} = 114 °C)</u>

Conformational/isomer searching not performed – isomer and conformation chosen based on the strong preference of SA-MTTA_{half} and SA-MTTA_{full} for the given structure.

The debonding temperature of the first sorbic alcohol from the SA-MTTA_{full}–SA adduct is much lower than for the cleavage of the second sorbic alcohol as the SA-MTTA_{full} adduct is stabilized via strong hydrogen bonding interactions.

ONIOM Core (Sorbic Alcohol-MTTA_{half}):

ΔG^* soln	G^* soln $\Delta H(g)$		$\Delta\Delta G^*$ solv	
kJ mol ⁻¹	kJ mol ⁻¹	J mol ⁻¹ K ⁻¹	kJ mol ⁻¹	
-37.5	-116.1	-242.8	8.2	
-33.9	-116.2	-243.0	6.6	
-30.0	-116.2	-243.1	5.3	
-21.9	-116.1	-242.9	3.0	
-13.3	-115.9	-242.3	1.4	
-4.4	-115.6	-241.6	0.1	
4.7	-115.2	-240.8	-0.9	
13.9	-114.7	-239.9	-1.7	
23.2	-114.2	-239.0	-2.4	
32.4	-113.6	-238.2	-3.0	
	-21.9 -13.3 -4.4 4.7 13.9 23.2 32.4	-21.9-116.1-13.3-115.9-4.4-115.64.7-115.213.9-114.723.2-114.232.4-113.6	-21.9 -116.1 -242.9 -13.3 -115.9 -242.3 -4.4 -115.6 -241.6 4.7 -115.2 -240.8 13.9 -114.7 -239.9 23.2 -114.2 -239.0 32.4 -113.6 -238.2	

Key thermodynamic parameters and equilibrium constants in acetonitrile as a function of temperature, using M05-2X/6-31G* geometries and frequencies.

Species	Entropy (298K) / J mol ⁻¹ K ⁻ 1	H ²⁹⁸ -H ⁰	ZPVE	HLC	E[M05-2X/ 6-31G* SMD, gas geom]	E[M05-2X/ 6-31G* SMD, sol geom]	<i>E</i> [MP2/ 6-31G*]	<i>E</i> [MP2/ G3MP2Large]	E[CCSD(T)/ 6-31G*]
SA	376.8	0.009635	0.143924	-0.188260	-309.792225	-309.792439	-308.786687	-309.169559	-308.886143
MTTA half	403.9	0.010523	0.097640	-0.216499	-1102.770887	-1102.771697	-1100.815552	-1101.328457	-1100.911714
MTTA	576.2	0.019177	0.177408	-0.423585	-2204.360345	-2204.360849	-2200.474347	-2201.480435	-2200.659468
SA – MTTA half	545.5	0.018238	0.247853	-0.404759	-1412.616091	-1412.618356	-1409.660602	-1410.560199	-1409.849476
SA - MTTA	709.7	0.026826	0.327454	-0.611845	-2514.216669	-2514.217497	-2509.331850	-2510.724004	-2509.608480
SA - MTTA - SA	843.4	0.034651	0.477532	-0.800105	-2824.049170	-2824.054470	-2818.167199	-2819.948908	

Components of Solution Free Energy Calculations-values in E_h unless otherwise specified

Species	E ⁰	H ²⁹⁸	G _{gas} (298K)	⊿G _{solv} (298K)	E _{relax} [M06-2X/	G° _{sol} (298K)	
	[G3MP2,CC]	[G3MP2,CC]	[G3MP2,CC]	[COSMO(RS)]	6-31G*, SMD]	[G3MP2,CC]	
SA	-309.313351	-309.303716	-309.346501	-0.010945	-0.000215	-309.354212	
MTTA half	-1101.543478	-1101.532955	-1101.578818	-0.012773	-0.000810	-1101.587762	
MTTA	-2201.911733	-2201.892556	-2201.957988	-0.026363	-0.000504	-2201.980829	
SA - MTTA half	-1410.905979	-1410.887741	-1410.949685	-0.020259	-0.002265	-1410.964660	
SA - MTTA	-2511.285025	-2511.258199	-2511.338789	-0.032184	-0.000828	-2511.367127	
SA - MTTA - SA	-2820.065009	-2820.030359	-2820.126136	-0.040603	-0.005300	-2820.158420	

Ethylsorbate

<u>Ethyl sorbate + MTTA_{half}</u>($T_{logK=2.6} = 225$ °C)

Key thermodynamic parameters and equilibrium constants in acetonitrile as a function of temperature, using M05-2X/6-31G* geometries and frequencies.

T (°C)	log K	ΔG^* soln	$\Delta H(g)$	$\Delta S(g)$	$\Delta\Delta G^*$ solv	
		kJ mol ⁻¹	kJ mol ⁻¹	J mol ⁻¹ K ⁻¹	kJ mol ⁻¹	
0	12.2	-63.8	-122.5	-231.1	2.6	
25	10.4	-59.6	-122.5	-231.1	1.9	
50	8.9	-55.2	-122.4	-231.0	1.3	
100	6.5	-46.5	-122.2	-230.5	0.3	
150	4.7	-37.7	-121.9	-229.7	-0.5	
200	3.2	-28.9	-121.5	-228.8	-1.2	
250	2.0	-20.1	-121.1	-227.8	-1.8	

Species	Entropy (298K) / J mol ⁻¹ K ⁻ 1	H ²⁹⁸ -H ⁰	ZPVE	HLC	E[M05-2X/ 6-31G* SMD, gas geom]	E[M05-2X/ 6-31G* SMD, sol geom]	<i>E</i> [MP2/ 6-31G*]	<i>E</i> [MP2/ G3MP2Large]	<i>E</i> [CCSD(T)/ 6-31G*]
Ethylsorbate	442.2	0.012656	0.182196	-0.263564	-462.450496	-462.450663	-461.017407	-461.555792	-461.146024
MTTA half	402.6	0.010476	0.097745	-0.216499	-1102.771496	- 1102.771707	-1100.815553	-1101.328463	-1100.911710
Ethsorb – MTTA half	613.7	0.021663	0.285046	-0.480063	-1565.271285	- 1565.271840	-1561.886457	-1562.941204	-1562.104558
Species	E ⁰	H ²⁹⁸	G	_{gas} (298K)	⊿G _{solv} (298K)	E _{relax} [M06-2X/	G [°] sol (298K)		
	[G3MP2,CC]	[G3MP2	,CC] [G	3MP2,CCJ	[COSMO(RS)]	6-31G*, SMDJ	[G3MP2,CC]		
Ethylsorbate	-461.765776	-461.753	3121 -46	51.803335	-0.011957	-0.000167	-461.812273		
MTTA half	-1101.543374	-1101.53	2898 -11	01.578621	-0.012714	-0.000211	-1101.588316	6	
Ethsorb – MTTA half	-1563.354322	-1563.33	2659 -15	63.402348	-0.023942	-0.000555	-1563.423272	2	

Components of Solution Free Energy Calculations- values in E_h unless otherwise specified

Molecular Gas Phase Geometries

```
Sorbalc - M05-2X
```

1\1\GINC-R41\FOpt\RM052X\Gen\C6H1001\ROOT\02-Dec-2015\0\\#M052X/gen 6D SCF=Tight IOP(2/17=4) INT(grid=ultrafine) Opt maxdisk=671088640\\a1 b 3 c3\\0,1\C,-6.6931052609,1.9839842681,0.7412792194\C,-5.4724118052,1. 1173100314,0.6941830631\C,-5.2633524218,0.0559867077,1.4795727479\C,-4 .0637276052,-0.7704438649,1.4182229562\C,-3.8460171286,-1.8278927979,2 .2058060482\C,-2.6144637785,-2.6866176312,2.1327851928\O,-1.8199809301 *,*−2.434688758,0.9897518415\H,−2.3788038151,−2.5915273216,0.2180884579\ H,-7.3934036518,1.6339800874,1.5006227551\H,-7.2074711513,1.9906585322 ,-0.2235464739\H,-6.4293901963,3.0203299334,0.969015254\H,-4.709655875 4,1.3839611289,-0.0333027241\H,-6.0165182788,-0.2223671653,2.212992260 3\H,-3.3060072777,-0.4914399222,0.691917429\H,-4.5854636729,-2.1081621 452,2.9515565793\H,-1.9690607967,-2.4932259996,2.9927841831\H,-2.90320 23536,-3.7443380832,2.1875272103\\Version=ES64L-G09RevD.01\State=1-A\H F=-309.7801827\RMSD=7.394e-09\RMSF=1.217e-05\Dipole=-0.687576,-0.07909 36,-0.0651558\Quadrupole=-4.422078,2.3245857,2.0974923,0.0740582,-0.28 96286,-1.6388745\PG=C01 [X(C6H1001)]\\@

MTTA half - M05-2X

1\1\GINC-R42\FOpt\RM052X\Gen\C4H6O2S2\ROOT\27-Jan-2016\0\\# M052X/Gen 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=1073741824\\u u.M052X\\0,1\C,0.339587294,1.0985392283,-0.6999772702\C,0.3263870022,0 .0262148892,0.3813103638\0,1.5509970003,1.569307427,-0.9533825394\0,-0 .6695908259,1.4640098525,-1.2539309261\S,1.6626642649,-0.4923174655,1. 1513068592\S,-1.3063317174,-0.5091873141,0.6219856501\C,-1.0704031415, -1.7448820271,1.9145034126\H,-2.0594699825,-2.1431273098,2.1344804692\ H,-0.6400686187,-1.2871989987,2.8036116388\H,-0.4115970368,-2.53831976 31,1.5657799351\C,1.591761065,2.5828385279,-1.9696574444\H,2.636885474 1,2.8594446704,-2.0573135108\H,1.2122457466,2.1830080008,-2.9077832845 \H,0.9849504756,3.4344582822,-1.6688263537\\Version=ES64L-G09RevD.01\S tate=1-A\HF=-1102.7601919\RMSD=6.392e-09\RMSF=1.245e-05\Dipole=0.02285 36,-0.0426739,0.0469823\Quadrupole=-4.3155964,3.1483046,1.1672918,5.41 72288,-5.9043315,-4.1758342\PG=C01 [X(C4H602S2)]\\@

SA-MTTA half - M05-2X

1\1\GINC-R37\FOpt\RM052X\Gen\C10H16O3S2\ROOT\27-Jan-2016\0\\# M052X/Ge n 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=1610612736\ \21uu.M052X\\0,1\C,-4.8824599914,-4.272014071,-1.6210468883\C,-3.97782 91201,-3.5374690641,-0.6298436094\C,-2.8731751003,-4.4226170209,-0.136 0926473\C,-1.604953657,-4.0704195423,0.055147032\C,-0.981274927,-2.729 2318269,-0.2266188343\C,-0.07444103,-2.8303976291,-1.4887850134\0,1.23 20450369,-2.3577170635,-1.2700125897\S,-3.370862716,-2.0383816666,-1.4 748505823\C,-2.0295414869,-1.6022871882,-0.3137142557\S,-2.6075261371, -1.2983380531,1.4166337843\C,-3.8739773267,-0.018080761,1.1922882328\C ,-1.3731348157,-0.3071864566,-0.7693618388\0,-0.1933317261,-0.05887814 01,-0.6494843118\0,-2.2460520741,0.5631432971,-1.2746669344\C,-1.68426 15475,1.8261228723,-1.6699300429\H,-4.5745874267,-3.2058750919,0.22525 17796\H,-3.1764956521,-5.4384528516,0.102231021\H,-0.9066035687,-4.820 1924013,0.4120669453\H,-0.3062565804,-2.4869757729,0.6001148575\H,-4.3 056465797,-4.6140151556,-2.4810158179\H,-5.6879911177,-3.6252751473,-1 .97243085\H,-5.3292645539,-5.1408033748,-1.1337160012\H,-3.4356669294, 0.9636426267,1.0294466153\H,-4.4546948757,-0.0084856042,2.1136885742\H ,-4.5214688489,-0.2780822392,0.3559540749\H,1.1416451451,-1.4280593343 ,-1.0151989007\H,-2.5172072733,2.4010522837,-2.0602982427\H,-0.9250528 011,1.670196161,-2.4328688168\H,-1.2366400222,2.3176518148,-0.80871162 31\H,0.0255963073,-3.8779005778,-1.7710121861\H,-0.5665056038,-2.32144 90213,-2.32793193\\Version=ES64L-G09RevD.01\State=1-A\HF=-1412.5995433 \RMSD=5.426e-09\RMSF=2.176e-06\Dipole=-1.4724735,0.6188776,-0.0286912\ Quadrupole=-8.0444976,11.1937868,-3.1492892,2.5541876,-0.6148958,-2.26 07403\PG=C01 [X(C10H1603S2)]\\@

MTTA full - M05-2X

1\1\GINC-R45\F0pt\RM052X\Gen\C8H1004S4\ROOT\02-Dec-2015\0\\#M052X/gen 6D SCF=Tight IOP(2/17=4) INT(grid=ultrafine) Opt maxdisk=2147483648\\a 1 b3 c3\\0,1\C,0.3735125428,1.0742883577,-0.7324481243\C,0.3661422848, 0.0914654189, 0.42959116\0, 1.5442333419, 1.6757026456, -0.8984188154\0, -0 .5992812749,1.2699184347,-1.4200762543\s,1.6186963984,-0.0997341781,1. 4497366507\s,-1.1584792352,-0.7355801493,0.4577533425\c,-0.92399717,-1 .8280554353,1.8736235687\H,-1.8417096382,-2.4069065697,1.9623865012\H, -0.7538791237,-1.2465778286,2.7780403995\H,-0.0742311779,-2.4878345953 ,1.7066566636\C,1.595174417,2.599602829,-1.9968222431\C,3.0146820243,3 .0887826856,-2.0846880607\H,1.2911836023,2.0919541452,-2.9108728305\H, 0.910648958, 3.426221252, -1.8046665973\0, 3.8081789135, 1.9759672296, -2.5 259148501\H,3.1013968649,3.9018662385,-2.8059179728\H,3.378729621,3.43 17049138,-1.1174860288\C,5.1133768073,2.2085316659,-2.5728706424\O,5.6 310155148, 3.2613215914, -2.2880638217\C, 5.9195016519, 1.0004944329, -3.02 79962589\\$,5.2428558997,-0.3879334457,-3.5384514157\\$,7.6093332598,1.3 74394307,-2.9099442335\C,8.3384927891,-0.176250114,-3.4729725164\H,9.4 170706236,-0.0386277748,-3.4193664059\H,8.0284957528,-0.9969736355,-2. 8282993687\H,8.0341973722,-0.3896999662,-4.4961389841\\Version=ES64L-G 09RevD.01\State=1-A\HF=-2204.3366704\RMSD=3.413e-09\RMSF=1.079e-05\Dip ole=0.1271522,-0.3487588,0.1125322\Quadrupole=1.9828462,-0.3144999,-1. 6683463,-3.1377759,-9.3173673,-4.6913647\PG=C02 [X(C8H1004S4)]\\@

SA-MTTA full - M05-2X

1\1\GINC-R41\FOpt\RM052X\Gen\C14H2005S4\ROOT\02-Dec-2015\0\\# M052X/Ge n 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=2684354560\ \21uuu.M052X\\0,1\C,-4.4484800857,-4.0818227537,-1.570029262\C,-3.7849 059052,-3.0795547202,-0.6227295093\C,-2.7062011524,-3.7364876185,0.188 827244\C,-1.5035485699,-3.2411347323,0.4739658877\C,-0.9497028542,-1.9 $250899863, -0.0065252977 \ c, 0.0495341545, -2.199674151, -1.1460983755 \ o, 0.$ 7913518882,-1.0608324592,-1.5309188366\s,-3.1839212639,-1.6942117329,-1.6483814797\C,-2.0680243028,-0.9421586451,-0.4107703474\S,-2.95004522 23,-0.4430045432,1.1246853301\C,-3.8973167344,0.9603347941,0.472809903 1\C,-1.4736010717,0.2992511151,-1.0659608632\0,-1.7389271242,0.6855150 172,-2.1737208132\0,-0.635960462,0.9407030043,-0.233330539\C,0.2112276 595,1.8972170491,-0.8749979817\H,-4.5376747914,-2.6817914044,0.0638288 952\H,-2.9785963351,-4.7058964384,0.5986412598\H,-0.8269950399,-3.8355 826253,1.0793178513\H,-0.3939394527,-1.4544937169,0.8125357036\H,-3.71 33311269,-4.4994266511,-2.258898513\H,-5.2393582822,-3.6042263536,-2.1 504824367\H,-4.8912695521,-4.8975006389,-0.9946110594\H,-3.2522773068, 1.8183296799,0.2858698326\H,-4.6332051582,1.2231576983,1.2308711293\H, -4.4096288115,0.6674416324,-0.4434807161\H,1.3701939999,-0.8206059292,

-0.790514924\C,1.2987445348,2.2221491795,0.1129594845\H,-0.3540127812, 2.7951989745,-1.1276437695\H,0.6131872334,1.4554278683,-1.78571454\H,0 .7140794997,-3.0101400713,-0.8243638804\H,-0.4958234725,-2.5372744088, -2.0263572717\0,2.0296676672,0.9971489216,0.3447196598\H,1.9812622209, 2.9752348041,-0.2793351827\H,0.8920158929,2.56562192,1.0626844247\C,3. 016157609,1.0952042675,1.2263711198\0,3.3495362431,2.1172591215,1.7726 632511\C,3.7115581553,-0.2330963096,1.4961637219\S,3.1893039034,-1.660 0552908,0.9028134354\S,5.0818934688,0.0404439663,2.5124702869\C,5.7265 55473,-1.6358121157,2.679347196\H,6.6127724044,-1.5555151896,3.3062894 064\H,4.9872490351,-2.2810265683,3.1507508971\H,5.9885408163,-2.040634 9596,1.7032206783\\Version=ES64L-G09RevD.01\State=1-A\HF=-2514.1868257 \RMSD=6.241e-09\RMSF=2.886e-06\Dipole=0.9392289,-0.3942941,1.2329835\Q uadrupole=10.0474316,3.971597,-14.0190286,-3.3907534,1.6691794,-4.5311 211\PG=C01 [X(C14H2005S4)]\\@

SA-MTTA full-SA - M05-2X

1\1\GINC-R38\FOpt\RM052X\Gen\C20H3006S4\ROOT\18-Jan-2016\0\\# M052X/Ge n 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=3489660928\ \21uuu21.M052X\\0,1\C,3.3399188563,-1.1840501878,-1.853660844\C,2.3662 530766, -0.9637203134, -0.6935693836\C, 2.6773318992, 0.2975945815, 0.05438 00309\C,1.7957939067,1.1816322467,0.5133275365\C,0.2997362301,1.148613 4311,0.3410691145\C,-0.1267366759,2.2300651788,-0.6956137802\0,-1.1337 897659, 3.0882310321, -0.2180642021\s, 0.6900227256, -0.9792424681, -1.4115 281724\C,-0.2162725351,-0.2642501819,0.0041884346\S,-0.0801239843,-1.2 496544764,1.5642279639\C,-0.5955940907,-2.9090483516,1.0399995434\C,-1 .6974524271,-0.221840253,-0.3374023196\0,-2.4618674631,0.6586365708,-0 .0105657009\0,-2.0930046846,-1.3018925544,-1.0156065583\C,-3.474264766 3,-1.3232667383,-1.4068770246\H,2.4319514564,-1.8099782832,-0.00283053 61\H,3.7339709491,0.4640624632,0.2456404865\H,2.1643595112,2.058479066 8,1.0353286671\H,-0.1593874436,1.4518557081,1.2873224514\H,3.296555346 9,-0.3448742967,-2.5492610361\H,3.102999107,-2.1014778447,-2.395524047 1\H,4.3582712631,-1.2656690718,-1.4687596104\H,-1.6770957056,-2.993782 8725,0.9631932179\H,-0.232344177,-3.5908648455,1.8076870551\H,-0.13426 9223,-3.1569899372,0.0848953025\H,-1.8957717485,2.5247218905,-0.021734 5585\H,-3.7119282512,-0.3987988505,-1.9309036501\H,-4.1049681322,-1.40 19993811,-0.521181485\H,0.7306631787,2.864468338,-0.9175300204\H,-0.40 92530862,1.737466617,-1.6350887663\C,1.8120803066,-1.1521624715,-6.176 7250945\C,0.4066159132,-1.6657121073,-6.4981598337\C,0.4516353552,-2.8 832618981,-7.3714656785\C,-0.3068796466,-3.9693960224,-7.2521651587\C, -1.3373526994,-4.2475810467,-6.1892976906\C,-0.7840756959,-5.313208386 7,-5.1971041395\0,-1.6545242211,-6.4026577505,-5.0125231608\S,-0.41855 66571,-1.9582234407,-4.8984768593\C,-1.8242910763,-2.9581988337,-5.499 1430476\s,-2.899729724,-2.0887504457,-6.7282880145\c,-3.3239793932,-0. 5451010675, -5.8731408435\C, -2.7225240129, -3.2936352913, -4.3188720311\0 ,-3.3117986294,-4.34080573,-4.1685973058\0,-2.835136749,-2.2761782433, -3.4615318436\C,-3.6409573956,-2.5241459783,-2.299382503\H,-0.15416574 22,-0.8805316626,-7.0144972372\H,1.1673580007,-2.8314352771,-8.1874515 813\H,-0.1617956966,-4.7830551645,-7.9550846859\H,-2.2039542666,-4.714 305252,-6.6681687605\H,2.3912042801,-1.9252490517,-5.6698634279\H,1.76 99505839,-0.2690351472,-5.5366222956\H,2.3254237789,-0.8819207813,-7.1 015495196\H,-4.1117577692,-0.6907288991,-5.1376669006\H,-3.671972755,0 .1384992331,-6.6462903686\H,-2.4384138841,-0.1310446756,-5.3926735374\ H, -2.473330114, -6.0338250331, -4.6516605218\H, -3.2964160606, -3.43545275 67, -1.8130293268\H, -4.6823272179, -2.6513299425, -2.5957212352\H, 0.13794

68821,-5.7284562114,-5.6024342604\H,-0.522619041,-4.8230168809,-4.2503 012449\\Version=ES64L-G09RevD.01\State=1-A\HF=-2824.0158541\RMSD=7.712 e-09\RMSF=1.868e-06\Dipole=0.429175,0.0528948,-0.1514725\Quadrupole=19 .3440965,-21.6024617,2.2583652,-0.5566607,-4.5390917,-16.4199278\PG=C0 1 [X(C20H3006S4)]\\@

Ср

1\1\GINC-R95\FOpt\RM052X\Gen\C5H6\ROOT\13-Jan-2016\0\\# M052X/Gen 6D S
CF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=671088640\\cp.smd
.acetonitrile\\0,1\C,-3.2325664467,0.8025580063,-0.0008649936\C,-3.278
7033873,2.1452289005,0.0007877044\C,-1.828467364,0.366888826,-0.000265
6634\C,-1.0303576146,1.4475500492,0.0017473281\C,-1.8777540918,2.68832
07226,0.0026167137\H,-4.081686646,0.1333067175,-0.0024017229\H,-4.1655
011883,2.7621536795,0.0008394617\H,-1.5074284644,-0.6654889501,-0.0013
02975\H,0.049896482,1.4539218046,0.0026384455\H,-1.6840706319,3.313846
3385,0.881648834\H,-1.6826349841,3.3160573438,-0.8745197155\\Version=E
S64L-G09RevD.01\State=1-A'\HF=-194.0721845\RMSD=4.182e-09\RMSF=4.354e05\Dipole=0.0521367,0.1680802,0.0002542\Quadrupole=0.848976,1.6945217,
-2.5434976,0.2900188,0.0031384,0.0055727\PG=CS [SG(C5H4),X(H2)]\\@

MTTA half-Cp

1\1\GINC-R89\F0pt\RM052X\Gen\C9H1202S2\ROOT\13-Jan-2016\0\\#M052X/gen 6D SCF=Tight IOP(2/17=4) INT(grid=ultrafine) Opt maxdisk=1610612736\\a 1 b1\\0,1\C,-6.3267887386,1.8908052102,0.0324635622\0,-5.5908462206,0. 8677880036,-0.6501725309\C,-4.3636988878,1.2203012642,-1.0307027116\C, -3.6502841297,0.1342377147,-1.8142692999\0,-3.8881842819,2.3164488293, -0.8381832268\C,-2.1017374016,0.3544758216,-1.8119187934\C,-1.65314424 08,0.4660943619,-0.3653162717\\$,-3.9088586302,-1.5533688667,-1.1123268 42\C,-2.0571706617,-1.734615459,-0.9210702055\C,-1.6416215914,-0.76417 35355,0.1582748221\C,-1.5421889159,-1.0286408187,-2.1789937766\S,-4.35 72708792,0.1118992785,-3.5094450983\C,-4.2552617368,1.8748099854,-3.95 14744718\H,-5.799134919,2.191082267,0.9355081495\H,-6.4527195022,2.757 0144835,-0.6147514465\H,-1.8238422037,1.1843191795,-2.4567618885\H,-1. 5063072731,1.4020515361,0.1518328867\H,-1.8101866857,-2.7838100714,-0. 7876956334\H,-1.4834024259,-1.0351271908,1.1926941137\H,-1.9438567602, -1.4358501882,-3.1053279905\H,-0.4519752051,-1.0120258103,-2.205428532 5\H,-4.9180163876,2.4830168944,-3.338486761\H,-4.5756291518,1.93597476 45,-4.9908477895\H,-3.2380575309,2.2537207268,-3.8718718442\H,-7.28614 56386,1.4451026193,0.2736125806\\Version=ES64L-G09RevD.01\State=1-A\HF =-1296.8777593\RMSD=4.652e-09\RMSF=1.946e-05\Dipole=0.2797138,0.424577 1,0.2165292\Quadrupole=1.858252,-2.5569563,0.6987043,-6.5352577,-1.677 8042,-2.9903915\PG=C01 [X(C9H12O2S2)]\\@

MTTA full-Cp

1\1\GINC-R66\FOpt\RM052X\Gen\C13H1604S4\ROOT\10-Mar-2016\0\\# M052X/Ge n 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=2684354560\ \1uuup.M062X\\0,1\C,2.3776661186,-1.7316480122,-0.8569464866\C,3.75428 88459,-1.0665339599,-0.7670165947\C,4.1739476964,-1.4340465041,0.63302 79785\C,3.07064515,-1.5350490311,1.3814962316\C,1.8763255439,-1.216218 2411,0.505214853\S,3.2888922806,0.7478395729,-0.733440996\C,1.82080474 4,0.3367940135,0.3151791727\S,1.9559140858,1.2971765951,1.8615618429\C ,0.3508459612,0.878853247,2.6080297869\C,0.5665327677,0.7169793757,-0. 463303879\0,-0.2407034673,-0.0845157786,-0.8728080373\0,0.4736133781,2 .0399805442,-0.6497412281\C,-0.6358150962,2.5058188701,-1.4307672481\H

,5.199773944,-1.4814913382,0.9697624142\H,3.0245660609,-1.6889921489,2 .4494436151\H,0.9106826889,-1.5962611852,0.8303874683\H,-0.4824526442, 1.1848639293,1.9760778935\H,0.2981058608,1.4270812654,3.5480347965\H,0 .2748310033,-0.1871099217,2.820250743\H,1.7786300055,-1.4013267424,-1. 7024344308\H,2.4640887528,-2.8190338932,-0.8520273053\C,-1.803659134,2 .8396072452,-0.5258340426\H,-0.9095719438,1.7579719785,-2.170325025\H, -0.2875279514, 3.4119408998, -1.9229140713\0, -2.2629685463, 1.6684956778, 0.1703676636\H,-1.4937427559,3.5223463405,0.2609921503\H,-2.6200799778 ,3.2672044988,-1.1062935932\C,-2.9356249461,0.7993969288,-0.5809783608 \0,-3.2777359343,1.0019735329,-1.7202838043\C,-3.261592269,-0.49759430 31,0.1426807051\s,-2.9196267543,-0.7663184275,1.7115317022\s,-4.030348 6005,-1.579892709,-0.9690416261\C,-4.2971450362,-3.0183405561,0.085290 6857\H,-4.7783535432,-3.7662992804,-0.5425785426\H,-3.3464768253,-3.39 36130597,0.4603783939\H,-4.9380996578,-2.7607013941,0.9266318608\H,4.4 590001952,-1.2381080289,-1.575534686\\Version=ES64L-G09RevD.01\State=1 -A\HF=-2398.4606296\RMSD=6.703e-09\RMSF=5.362e-06\Dipole=-0.3165817,-0 .6125306,0.074261\Quadrupole=-2.5362494,7.6804347,-5.1441853,-3.176870 6,-3.719142,-1.9499393\PG=C01 [X(C13H16O4S4)]\\@

Cp-MTTA full-Cp

1\1\GINC-R37\F0pt\RM052X\Gen\C18H2204S4\ROOT\10-Mar-2016\0\\# M052X/Ge n 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=3221225472\ \1uuu1-gas\\0,1\C,2.3472890043,-1.6632627333,-1.7098688948\C,3.7834754 156,-1.1393102826,-1.629975226\C,4.3024965265,-1.8703461268,-0.4191312 356\C,3.274157951,-2.078346153,0.4100935183\C,2.0358032964,-1.46734208 86,-0.2134076333\s,3.5007190773,0.639231875,-1.1097373189\C,2.11788264 54,0.0842336786,-0.0103774688\s,2.5370715701,0.6112403759,1.6854070764 \C,1.0077699747,0.1315262761,2.5432340004\C,0.8375318668,0.7386310351, -0.5215140986\0,-0.022727008,0.1463607562,-1.1299241981\0,0.7924756352 ,2.0462142837,-0.2442564593\C,-0.3654386501,2.7619111406,-0.6998004442 \H,5.3473429673,-2.0693975104,-0.2277656246\H,3.3209406102,-2.48823753 16,1.4082199656\H,1.0729130126,-1.8435130622,0.1271235581\H,0.13689161 73,0.6313839387,2.1204706165\H,1.128456791,0.4452117654,3.5796438495\H ,0.8549151669,-0.9465312255,2.5174565591\H,1.7027944572,-1.0934510025, -2.3739230823\H,2.3298331075,-2.7220381854,-1.9727477997\C,-1.38136291 92,2.8510964806,0.4187036391\H,-0.784074749,2.2763225564,-1.5762595113 \H,-0.0132736814,3.7610685359,-0.950444163\H,-0.9168981451,3.243715052 3,1.3201227658\H,-2.2145503715,3.4831251619,0.1133189083\H,4.384442217 ,-1.1534921406,-2.5346294229\C,-2.7489572468,-1.8547857958,-1.20638900 66\C,-2.5462998291,-2.6898952989,0.0624375648\C,-3.9478773669,-3.17226 93797,0.3377565223\C,-4.7979024443,-2.2429522917,-0.1097523068\C,-3.98 62470371,-1.1011768925,-0.6852202031\S,-2.175449463,-1.3576310067,1.32 46852209\C,-3.4056042555,-0.2608372982,0.5004702644\S,-4.6493514376,0. 2290677373,1.7590368394\C,-5.8331344841,1.1352645989,0.7149613618\O,-1 .874199781,1.5564055768,0.7973956787\H,-4.1880605422,-4.0588624821,0.9 072504544\H,-5.8706469044,-2.2327357737,0.0194000411\H,-4.4844648362,-0.4500387844,-1.3981396386\H,-5.3464133467,1.9327779503,0.1566623488\H ,-6.564838349,1.567900023,1.3961117068\H,-6.3450786148,0.4642403865,0. 0262878239\H,-1.9018475628,-1.2143518254,-1.4468124432\H,-3.0109949204 ,-2.486784128,-2.0561494851\H,-1.741978392,-3.4202159678,0.0691224412\ C,-2.7911993934,1.0276270283,-0.0246446853\0,-3.165665179,1.5711027543 ,-1.0388923756\\Version=ES64L-G09RevD.01\State=1-A\HF=-2592.5786512\RM SD=8.209e-09\RMSF=3.173e-06\Dipole=-0.6246519,-0.4391293,-0.4230322\Qu adrupole=-0.4143145,6.9056769,-6.4913625,-7.8210012,-1.2335413,1.98500

66\PG=C01 [X(C18H22O4S4)]\\@

DMBD.gas

1\1\GINC-R421\FOpt\RM052X\Gen\C6H10\ROOT\10-Dec-2015\0\\#M052X/gen 6D SCF=Tight IOP(2/17=4) INT(grid=ultrafine) Opt maxdisk=671088640\\a4\\0 ,1\C,-1.3023354109,0.3841677425,0.0689189768\C,0.1781586493,0.42135503 72,0.0457290102\C,-1.9730267158,-0.7669813807,-0.0504225881\C,0.848840 1564,1.5725645532,0.1645419127\C,-2.0449589163,1.6853742238,0.23153540 13\C,0.9207897465,-0.8798982394,-0.1164777805\H,-1.4765273252,-1.72023 68064,-0.1687705554\H,-3.0556585195,-0.7813451082,-0.0320183365\H,0.35 23316443,2.5258762032,0.2823977062\H,1.9314712509,1.5869326526,0.14609 93903\H,-1.8078230919,2.3764280867,-0.5806780729\H,-1.7748537291,2.176 588938,1.1691998582\H,-3.1206700695,1.5134543586,0.2321602424\H,0.6512 194415,-1.3710278601,-1.054349368\H,0.6831114709,-1.5709905406,0.69553 44176\H,1.9965129033,-0.7080523635,-0.1164549382\\Version=ES64L-G09Rev D.01\State=1-A\HF=-234.5808313\RMSD=3.441e-09\RMSF=1.007e-04\Dipole=-0 .0000007,0.0000045,-0.0000392\Quadrupole=1.1980414,1.1856961,-2.383737 5,-0.3442759,-0.1066359,0.4198462\PG=C02 [X(C6H10)]\\@

MTTA DMBD gas

1\1\GINC-R159\F0pt\RM052X\Gen\C10H1602S2\ROOT\10-Dec-2015\0\\#M052X/ge n 6D SCF=Tight IOP(2/17=4) INT(grid=ultrafine) Opt maxdisk=1610612736 \a3 b4\\0,1\C,-0.6626635085,0.3546413273,-0.0947754119\C,-0.6214121768 ,-0.9471466517,-0.3967282752\C,0.6506590621,-1.7580877001,-0.515971832 6\C,0.5616167844,1.197500083,0.1601845595\S,2.1316810316,0.5613237392, -0.4843232587\C,1.9101302207,-1.1489297327,0.0979646897\C,-1.929801167 8,1.154185187,0.0833785401\C,-1.839275119,-1.7923378878,-0.6760122858\ s,1.7650759073,-1.3076245237,1.9292562869\C,3.323789291,-0.5516720778, 2.4703243608\C,3.1645300264,-1.9111752167,-0.2993950529\0,2.9247519732 ,-3.2136843866,-0.4858156586\0,4.2604019434,-1.4132831656,-0.39430357\ C,4.0907420896,-3.9984670992,-0.7727272639\H,0.850514255,-1.9522251477 ,-1.5748496003\H,0.4840257786,-2.7368626937,-0.0556177755\H,0.66292877 09,1.3788193773,1.2342370126\H,0.4365392598,2.1709558247,-0.3209298438 \H,-2.8205471295,0.5369644183,0.1682021536\H,-2.0681648855,1.850358456 8,-0.749517969\H,-1.858117351,1.7567316838,0.9934983699\H,-2.732092006 1,-1.2075920446,-0.8823333455\H,-2.0472845512,-2.4581022163,0.16709579 9\H,-1.6525924212,-2.4298011926,-1.5449661918\H,3.4305702047,0.4379883 529,2.0291912858\H,4.1815397085,-1.1643884831,2.2024099502\H,3.2563824 692,-0.4665394807,3.553997783\H,3.731509218,-5.0139176123,-0.904842736 1\H,4.7913442202,-3.9398407056,0.0579692075\H,4.5738141019,-3.63402043 12,-1.6768699268\\Version=ES64L-G09RevD.01\State=1-A\HF=-1337.4026027\ RMSD=6.170e-09\RMSF=4.962e-06\Dipole=-0.5405137,-0.5082772,0.069252\Qu adrupole=-1.2482681,3.8145867,-2.5663186,-6.5729672,2.7879455,4.34516 PG=C01 [X(C10H1602S2)]\\@

Furan_gas

1\1\GINC-R37\FOpt\RM052X\Gen\C4H401\ROOT\15-Jan-2016\0\\# M052X/Gen 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=671088640\\fur gas\\0,1\C,-2.7073533774,0.9387992975,0.\C,-1.7263277283,-0.1078173492 ,0.\C,-0.5204352366,0.5111833361,0.\C,-2.0117325619,2.1021790223,0.\0, -0.6769117686,1.858952105,0.\H,-3.7792994389,0.8330385725,0.\H,-1.9009 680763,-1.1707190225,0.\H,0.4949116247,0.1559971358,0.\H,-2.3005734369 ,3.1383369025,0.\\Version=ES64L-G09RevD.01\State=1-A'\HF=-229.9919863\ RMSD=9.215e-09\RMSF=7.069e-05\Dipole=-0.183923,-0.1724229,0.\Quadrupol e=1.3768417,1.5793612,-2.9562029,-1.5618955,0.,0.\PG=CS [SG(C4H4O1)]\\ @

MTTA_Furan_gas

1\1\GINC-R154\FOpt\RM052X\Gen\C8H1003S2\ROOT\18-Jan-2016\0\\#M052X/gen 6D SCF=Tight IOP(2/17=4) INT(grid=ultrafine) Opt(maxstep=2) maxdisk=1 610612736\\a6 b2\\0,1\C,-6.2958388109,2.3744348777,-0.5323784973\0,-5. 0933729406,1.7845836738,-0.0196542108\C,-4.1472341817,1.5676573471,-0. 9286606982\C,-2.8567641326,1.026828753,-0.3297433253\O,-4.2654458954,1 .8378158773,-2.1027140686\C,-2.0761941071,0.2179799608,-1.4326957713\C ,-0.6904988141,-0.1035261096,-0.9178221436\s,-3.1705253314,-0.20487929 64,0.9939594823\C,-2.3198556346,-1.4685599286,-0.1274521378\C,-0.84817 65145, -1.1429033461, -0.0995600052\0, -2.7281133947, -1.0486405451, -1.402 979754\s,-1.9242066141,2.4358002652,0.3714454624\c,-1.6371459188,3.416 1469282,-1.136649593\H,-6.0770122963,3.3469047034,-0.9694947867\H,-6.7 337312183,1.7282140742,-1.2901629691\H,-2.1846494108,0.6753037452,-2.4 096352794\H,0.1974222528,0.483757023,-1.0910673803\H,-2.6586455966,-2. 4723270265,0.1005229997\H,-0.1270580014,-1.6051141278,0.5569092327\H,-2.5696035625, 3.6423879666, -1.6497371314\H, -0.9565678604, 2.9076744021, -1.8190479369\H,-1.1738295056,4.3446437417,-0.8057625422\H,-6.955829510 4,2.4735550409,0.322974054\\Version=EM64L-G09RevC.01\State=1-A\HF=-133 2.7649922\RMSD=8.046e-09\RMSF=4.499e-06\Dipole=0.3317748,0.2370064,-0. 1011068\Quadrupole=5.5140404,3.379361,-8.8934014,-2.8945111,-2.0696868 ,-4.1783347\PG=C01 [X(C8H1003S2)]\\@

Etsorbat trans gas

1\1\GINC-R922\FOpt\RM052X\Gen\C8H1202\ROOT\18-Jan-2016\0\\#M052X/gen 6 D SCF=Tight IOP(2/17=4) INT(grid=ultrafine) Opt maxdisk=1073741824\\a1 b1 c1\\0,1\C,-7.4714180937,0.2553437993,0.010359397\C,-6.0958875327,0 .8417454439,-0.0247220369\C,-4.9626967937,0.1310510229,0.0266173026\C, -3.6497636091,0.7495511868,-0.0108233129\C,-2.4932832908,0.0747542991, 0.038193015\C,-1.2161218724,0.8112481656,-0.0072876158\O,-0.1662391272 ,-0.0292407491,0.0525657779\C,1.1235705322,0.606508781,0.0139761801\C, 2.1611852275, -0.4920136441, 0.0915546822\H, -8.0358784965, 0.6419333059, 0 .8629997924\H,-7.4354224429,-0.8317874521,0.0836042428\H,-8.0303106693 ,0.5240121312,-0.8899299055\H,-6.0251534175,1.9239998421,-0.0972463528 \H,-5.0053975986,-0.9521126967,0.099294262\H,-3.6001690063,1.831985901 9,-0.0834397112\H,-2.4486355184,-1.0043014143,0.1108803418\H,1.1962405 771,1.3019434685,0.8501985447\H,1.2021082449,1.1833265945,-0.907598291 2\H,2.0487163833,-1.0581196902,1.0163651746\H,3.1629822731,-0.06122530 42,0.0657949431\H,2.0545649537,-1.1773078166,-0.7495187106\O,-1.098040 7226,2.0143748243,-0.0878077191\\Version=ES64L-G09RevD.01\State=1-A\HF =-462.4376286\RMSD=6.144e-09\RMSF=5.884e-06\Dipole=-0.4963756,-0.58486 69,0.0378193\Quadrupole=9.8225177,-5.2147389,-4.6077787,-1.5738652,0.1 518467,0.0361871\PG=C01 [X(C8H12O2)]\\@

MTTA Etsorb.M052X

1\1\GINC-R37\FOpt\RM052X\Gen\C12H1804S2\ROOT\28-Jan-2016\0\\# M052X/Ge n 6D SCF=Tight INT(grid=ultrafine) OPT IOP(2/17=4) maxdisk=2147483648\ \etso2.M052X\\0,1\C,-3.7392191056,-0.034641288,1.1106635654\C,-2.56919 57389,-0.2914081839,0.15829513\C,-2.439759036,0.814373174,-0.847177281 1\C,-1.3137940909,1.3787477108,-1.2748885601\C,0.0804537283,1.00564183

47,-0.8246136916\C,0.6504076125,2.0994402041,0.0734263628\0,1.19136594 62,1.9277766159,1.1374256284\0,0.4971049282,3.3016988773,-0.4945018733 \s,-1.0803622127,-0.5048402766,1.1890876038\c,0.1598076549,-0.36387645 55,-0.140557432\s,-0.0438639659,-1.6289412109,-1.4683550109\C,0.279003 3185,-3.1416024457,-0.5185321113\C,1.5239667445,-0.6068057104,0.494962 4023\0,1.6953681159,-1.210452489,1.5226868894\0,2.5126040635,-0.147565 1548,-0.2818754423\C,3.8172862087,-0.2693327857,0.2993828134\H,-2.7419 640102,-1.2286821714,-0.378768335\H,-3.3800601997,1.1583981523,-1.2700 485515\H,-1.3624197419,2.1804138651,-2.0003822921\H,0.7317557073,0.982 6883489,-1.7049352195\H,-3.5926709058,0.9011096006,1.6512436304\H,-3.8 36158152,-0.844861633,1.8348205649\H,-4.6700406806,0.0312494452,0.5436 1606\H,1.334895001,-3.247721979,-0.2785454147\H,-0.0381481092,-3.97038 20624,-1.1494829391\H,-0.3078070686,-3.1318486578,0.3990191436\C,1.011 9430514,4.4128980128,0.2701845308\H,4.5024493003,0.1453393604,-0.43328 75866\H,4.0455415011,-1.3146233879,0.4963712705\H,3.8520359781,0.29380 58252,1.2302702087\C,0.7257403473,5.6660782595,-0.5265918208\H,0.52130 03475,4.4187343055,1.2426892792\H,2.0786583254,4.2582863924,0.42986982 72\H,1.0961714132,6.5396604286,0.0112341338\H,1.2163888815,5.621734470 1,-1.4989751007\H,-0.3467781571,5.7820630083,-0.6826593818\\Version=ES 64L-G09RevD.01\State=1-A\HF=-1565.2495177\RMSD=7.592e-09\RMSF=3.761e-0 6\Dipole=-0.0542131,0.8547623,-0.9050254\Quadrupole=6.6080285,5.994519 4,-12.6025479,1.7958794,-1.4503935,1.2072471\PG=C01 [X(C12H1804S2)]\\@

5. References

- 1 A. Rudin and H. L. W. Hoegy, J. Polym. Sci., Part A: Polym. Chem., 1972, 10, 217-235.
- 2 C. Strazielle, H. Benoit and O. Vogl, *Eur. Polym. J.*, 1978, **14**, 331-334.
- 3 W. Thiel, H. Viola and R. Mayer, Z. Chem., 1977, 17, 366-367.
- 4 W. Thiel and R. Mayer, J. Prakt. Chem., 1989, **331**, 243-262.
- 5 H. Dentel, I. Chataigner, F. Le Cavelier and M. Gulea, *Tetrahedron Lett.*, 2010, **51**, 6014-6017.
- 6 A. J. Inglis, T. Paulöhrl and C. Barner-Kowollik, *Macromolecules*, 2009, **43**, 33-36.
- K. Pahnke, J. Brandt, G. Gryn'ova, P. Lindner, R. Schweins, F. G. Schmidt, A. Lederer, M. L. Coote and C. Barner-Kowollik, *Chem. Sci.*, 2015, 6, 1061-1074.
- 8 B. Dervaux, T. Junkers, M. Schneider-Baumann, F. E. Du Prez and C. Barner-Kowollik, *J. Polym. Sci., Part A: Polym. Chem.*, 2009, **47**, 6641-6654.
- 9 P. W. Atkins, *Physikalische Chemie*, Wiley-VCH, Weinheim, 2006.
- 10 Y. Zhao, N. E. Schultz and D. G. Truhlar, J. Chem. Theory Comput., 2006, 2, 364-382.
- 11 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
- 12 M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265-3269.
- 13 A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- 14 E. I. Izgorodina, C. Yeh Lin and M. L. Coote, *PCCP*, 2007, 9, 2507-2516.
- 15 R. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2011, **115**, 14556-14562.
- 16 J. P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A, 2007, 111, 11683-11700.
- 17 D. J. Henry, M. B. Sullivan and L. Radom, J. Chem. Phys., 2003, 118, 4849-4860.
- 18 A. Klamt and G. Schuurmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799-805.
- 19 C. C. Pye, T. Ziegler, E. van Lenthe and J. N. Louwen, *Can. J. Chem.*, 2009, **87**, 790-797.
- 20 J. Ho, A. Klamt and M. L. Coote, J. Phys. Chem. A, 2010, 114, 13442-13444.
- 21 J. Ho, M. L. Coote, C. J. Cramer and D. G. Truhlar, in *Organic Electrochemistry*, eds. O. Hammerich and B. Speiser, Taylor and Francis Group 2015.
- 22 J. Ho and M. Coote, *Theor. Chem. Acc.*, 2010, **125**, 3-21.
- G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09 (Revision D.01)*, Gaussian Inc., Wallingford CT, 2009.
- 24 H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby and M. Schütz, *Wiley Interdisciplinary Reviews: Computational Molecular Science*, 2012, **2**, 242-253.
- 25 P. J. K. H.-J. Werner, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E.

Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, *MOLPRO, a package of ab initio programs*, Version 2012.1.

- 26 *ADF2014*, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, <u>http://www.scm.com</u>.
- 27 J. Zhou, N. K. Guimard, A. J. Inglis, M. Namazian, C. Y. Lin, M. L. Coote, E. Spyrou, S. Hilf, F. G. Schmidt and C. Barner-Kowollik, *Polym. Chem.*, 2012, 3, 628-639.
- 28 K. K. Oehlenschlaeger, N. K. Guimard, J. Brandt, J. O. Mueller, C. Y. Lin, S. Hilf, A. Lederer, M. L. Coote, F. G. Schmidt and C. Barner-Kowollik, *Polym. Chem.*, 2013, 4, 4348-4355.