Supporting Information to

Modifiable Poly(p-Phenylene Vinylene) Copolymers Towards Functional Conjugated Materials

Neomy Zaquen, a Kirsten Verstraete, a Laurence Lutsen, b,c Dirk Vanderzande b,c and Thomas Junkers a,b,*

a Polymer Reaction Design (PRD) Group, Instituut voor Materiaalonderzoek (IMO), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium;
b IMEC associated laboratory IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
c Design and Synthesis of Organic Semiconductor Group (DSOS), Instituut voor Materiaalonderzoek (IMO), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium.

*Author to whom correspondence should be addressed; E-Mail: thomas.junkers@uhasselt.be; Tel.: +32-1126-8318; Fax: +32-1126-8299.

Table of Contents:

Test for livingness of the anionic polymerization of CPM and CN-PPV monomers S1

1H NMR spectra of PPV-copolymers S2

1H NMR spectra of PEG-modified PPV copolymers S3
S1: Test for livingness of the anionic polymerization of CPM and CN-PPV monomers

Figure S1: Inverse of degree of polymerization (precursor polymer) versus the initiator concentration for the anionic polymerization of different premonomers.
S2: 1H NMR spectra of PPV-copolymers

Figure S2: 1H NMR spectrum of (MDMO/CPM)-PPV used for the determination of the composition of the copolymer with regards to MDMO-and CPM-content.

Figure S3: 1H NMR spectrum of (MDMO/CN)-PPV used for the determination of the composition of the copolymer with regards to MDMO-and CN-content.
S3: 1H NMR spectra of PEG-modified PPV copolymers

Figure S4: 1H NMR spectrum of PEG modified (MDMO/CPM)-PPV copolymers.