Advances in the synthesis of bio-based aromatic polyesters: novel copolymers derived from vanillic acid and ε-caprolactone

Claudio Gioia, Maria Barbara Banella, Paola Marchese, Micaela Vannini, Martino Colonna, Annamaria Celli*

Department of Civil, Chemistry, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.

*Corresponding author. Tel: 0039-51-2090349; fax: 0039-51-2090322.
E-mail address: annamaria.celli@unibo.it (A. Celli)

Electronic Supporting information (ESI)

Contents:
A) Figure S1: ¹H-NMR spectrum of poly(caprolactone) (PCL)
B) Figure S2: ¹³C-NMR spectrum of poly(caprolactone) (PCL)
C) Figure S3: ¹H-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-20/80
D) Figure S4: ¹³C-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-20/80
E) Figure S5: ¹H-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-50/50
F) Figure S6: ¹³C-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-50/50
G) Figure S7: ¹H-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-80/20
H) Figure S8: ¹³C-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-80/20
I) Figure S9: ¹H-NMR spectrum of poly(ethylene vanillate) PEV
J) Figure S10: ¹³C-NMR spectrum of poly(ethylene vanillate) PEV
K) Equation S1-S4: Quantitative determination of the molar fractions (F) of EV-EV, EV-CL, CL-CL and CL-EV sequences by ¹H-NMR signals
L) Equation S5-S8: Quantitative determination of the molar fractions (F) of EV-EV, EV-CL, CL-CL and CL-EV sequences by ¹³C-NMR signals
M) Equation S9-S11: Quantitative determination of the average sequence lengths of EV-EV and CL-CL dyads (L_EV-EV and L_CL-CL) and the randomness degree (B)
Figure S1: 1H-NMR spectrum of poly(caprolactone) (PCL)

Figure S2: 13C-NMR spectrum of poly(caprolactone) (PCL)
Figure S3: 1H-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-20/80

Figure S4: 13C-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-20/80
Figure S5: 1H-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-50/50

Figure S6: 13C-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-50/50
Figure S7: 1H-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-80/20

Figure S8: 13C-NMR spectrum of copolymer poly(ethylene vanillate-co-caprolactone) P(EV-co-CL)-80/20
Figure S9: 1H-NMR spectrum of poly(ethylene vanillate) PEV

Figure S10: 13C-NMR spectrum of poly(ethylene vanillate) PEV
Equation S1-S4: Quantitative determination of the molar fractions (F) of EV-EV, EV-CL, CL-CL and CL-EV sequences by 1H-NMR signals

\[
F_{EV-EV} = \frac{I_f}{I_f + I_f} \quad S1
\]

\[
F_{EV-CL} = \frac{I_f}{I_f + I_f} \quad S2
\]

\[
F_{CL-CL} = \frac{I_i}{I_i + I_i} \quad S3
\]

\[
F_{CL-EV} = \frac{I_i}{I_i + I_i} \quad S4
\]

Equation S5-S8: Quantitative determination of the molar fractions (F) of EV-EV, EV-CL, CL-CL and CL-EV sequences by 13C-NMR signals

\[
F_{EV-EV} = \frac{I_1}{I_1 + I_2} \quad S5
\]

\[
F_{EV-CL} = \frac{I_2}{I_1 + I_2} \quad S6
\]

\[
F_{CL-CL} = \frac{I_3}{I_3 + I_4} \quad S7
\]

\[
F_{CL-EV} = \frac{I_4}{I_3 + I_4} \quad S8
\]

Equation S9-S11: Quantitative determination of the average sequence lengths of EV-EV and CL-CL dyads (L_{EV-EV} and L_{CL-CL}) and the randomness degree (B)

\[
L_{EV-EV} = \frac{F_{EV-EV}}{F_{EV-CL}} + 1 \quad S9
\]

\[
L_{CL-CL} = \frac{F_{CL-CL}}{F_{CL-EV}} + 1 \quad S10
\]

\[
B = \frac{1}{L_{EV-EV}} + \frac{1}{L_{CL-CL}} \quad S11
\]