Supporting Information

Bimetallic aluminum complexes with cyclic β-ketiminato ligands: cooperative effect improves capability in polymerization of lactide and ε-caprolactone

Hai-Chao Huang, a Bin Wang, a Yan-Ping Zhang a and Yue-Sheng Li a,b

a Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
*Corresponding Author, E-mail: ysltjru.edu.cn

Table S1. Crystal data and structure refinements of complexes 4a-c

<table>
<thead>
<tr>
<th></th>
<th>4a</th>
<th>4b</th>
<th>4c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₂₈H₃₄Al₂N₂O₂</td>
<td>C₃₂H₄₀Al₂N₂O₂</td>
<td>C₃₁H₄₀Al₂N₂O₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>484.53</td>
<td>538.62</td>
<td>526.61</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)/c</td>
<td>P2(1)/c</td>
<td>P-1</td>
</tr>
<tr>
<td>Temperature(K)</td>
<td>113(2)</td>
<td>113(2)</td>
<td>113(2)</td>
</tr>
<tr>
<td>Wavelength(Å)</td>
<td>0.71073</td>
<td>0.71075</td>
<td>0.71073</td>
</tr>
<tr>
<td>a(Å)</td>
<td>10.649(2)</td>
<td>10.1875(7)</td>
<td>7.4541(8)</td>
</tr>
<tr>
<td>b(Å)</td>
<td>10.0527(18)</td>
<td>23.8487(16)</td>
<td>12.2711(13)</td>
</tr>
<tr>
<td>c(Å)</td>
<td>12.321(2)</td>
<td>12.0803(8)</td>
<td>15.7103(15)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90.00</td>
<td>90.00</td>
<td>77.640(6)</td>
</tr>
<tr>
<td>β (°)</td>
<td>98.931(4)</td>
<td>96.1673(16)</td>
<td>81.252(6)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90.00</td>
<td>90.00</td>
<td>80.078(6)</td>
</tr>
<tr>
<td>V(Å³),Z</td>
<td>1303.0(4), 2</td>
<td>2918.0(3), 4</td>
<td>1372.8(2), 2</td>
</tr>
<tr>
<td>Densitycalcd(Mg/m³)</td>
<td>1.235</td>
<td>1.226</td>
<td>1.274</td>
</tr>
<tr>
<td>Absorptioncoefficient(mm⁻¹)</td>
<td>0.139</td>
<td>0.131</td>
<td>0.137</td>
</tr>
<tr>
<td>F(000)</td>
<td>516</td>
<td>1152</td>
<td>564</td>
</tr>
<tr>
<td>Crystal size/mm</td>
<td>0.20 x 0.18 x 0.12</td>
<td>0.100 x 0.080 x 0.080</td>
<td>0.20 x 0.18 x 0.12</td>
</tr>
<tr>
<td>θ range for data (°)</td>
<td>3.11 to 27.50</td>
<td>1.710 to 28.723</td>
<td>3.06 to 27.55</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>16257</td>
<td>39454</td>
<td>17806</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2981</td>
<td>7499</td>
<td>6207</td>
</tr>
<tr>
<td>R(int) = 0.0181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R(int) = 0.0213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R(int) = 0.0226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>2981/0/156</td>
<td>7499/0/343</td>
<td>6207/0/334</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.048</td>
<td>1.045</td>
<td>1.038</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]: R1, wR2</td>
<td>R1 = 0.0292</td>
<td>R1 = 0.0334</td>
<td>R1 = 0.0328</td>
</tr>
<tr>
<td>wR2 = 0.0852</td>
<td>wR2 = 0.0929</td>
<td>wR2 = 0.0937</td>
<td></td>
</tr>
<tr>
<td>Largest diff. Peak and hole (e Å⁻³)</td>
<td>0.365 and -0.235</td>
<td>0.416 and -0.330</td>
<td>0.385 and -0.365</td>
</tr>
<tr>
<td>Bond distances</td>
<td>4a</td>
<td>4b</td>
<td>4c</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Al(1)-O(1)</td>
<td>1.8004(9)</td>
<td>1.7990(9)</td>
<td>1.7988(9)</td>
</tr>
<tr>
<td>Al(1)-N(1)</td>
<td>1.9359(10)</td>
<td>1.9448(10)</td>
<td>1.9497(11)</td>
</tr>
<tr>
<td>Al(1)-C(13)</td>
<td>1.9605(12)</td>
<td>1.9539(13)</td>
<td>1.9565(13)</td>
</tr>
<tr>
<td>Al(1)-C(14)</td>
<td>1.9611(13)</td>
<td>1.9609(12)</td>
<td>1.9628(13)</td>
</tr>
<tr>
<td>O(1)-C(1)</td>
<td>1.3119(13)</td>
<td>1.3097(12)</td>
<td>1.3151(14)</td>
</tr>
<tr>
<td>N(1)-C(11)</td>
<td>1.3080(14)</td>
<td>1.3171(14)</td>
<td>1.3071(15)</td>
</tr>
<tr>
<td>N(1)-C(12)</td>
<td>1.4696(13)</td>
<td>1.4761(12)</td>
<td>1.4785(14)</td>
</tr>
<tr>
<td>Bond angles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-Al(1)-N(1)</td>
<td>94.48(4)</td>
<td>94.82(4)</td>
<td>93.91(4)</td>
</tr>
<tr>
<td>O(1)-Al(1)-C(13)</td>
<td>114.99(5)</td>
<td>110.16(5)</td>
<td>111.89(5)</td>
</tr>
<tr>
<td>N(1)-Al(1)-C(13)</td>
<td>108.88(5)</td>
<td>111.22(5)</td>
<td>109.77(5)</td>
</tr>
<tr>
<td>O(1)-Al(1)-C(14)</td>
<td>112.21(5)</td>
<td>108.36(5)</td>
<td>106.87(5)</td>
</tr>
<tr>
<td>N(1)-Al(1)-C(14)</td>
<td>110.42(5)</td>
<td>113.69(5)</td>
<td>112.49(5)</td>
</tr>
<tr>
<td>C(13)-Al(1)-C(14)</td>
<td>114.06(5)</td>
<td>116.39(6)</td>
<td>119.04(6)</td>
</tr>
<tr>
<td>C(1)-O(1)-Al(1)</td>
<td>129.43(7)</td>
<td>128.14(7)</td>
<td>121.21(7)</td>
</tr>
<tr>
<td>C(11)-N(1)-Al(1)</td>
<td>122.87(7)</td>
<td>120.13(7)</td>
<td>117.88(8)</td>
</tr>
<tr>
<td>C(12)-N(1)-Al(1)</td>
<td>120.56(7)</td>
<td>123.66(7)</td>
<td>123.91(8)</td>
</tr>
</tbody>
</table>

The distances between Al(1) and Al(2)

<table>
<thead>
<tr>
<th>Al(1)- Al(2)</th>
<th>4a</th>
<th>4b</th>
<th>4c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.617</td>
<td>5.965</td>
<td>7.770</td>
</tr>
</tbody>
</table>
Table S3 Ring-opening polymerization of L-LA and \(\varepsilon \)-CL by 4a-c/PrOH system

<table>
<thead>
<tr>
<th>Run</th>
<th>Complex</th>
<th>Mono.</th>
<th>([\text{Al}]/[\text{OH}]/[\text{M}])</th>
<th>time (min)</th>
<th>Conv. (%)</th>
<th>TOF (h(^{-1}))</th>
<th>(M_n,\text{theo}) (^{c,d}) ((\times 10^4))</th>
<th>(M_n/\sigma^{f}) ((\times 10^4))</th>
<th>(M_n/M_n^{f})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4a</td>
<td>(\varepsilon)-CL</td>
<td>1:1:100</td>
<td>10</td>
<td>97</td>
<td>582</td>
<td>1.11</td>
<td>1.54</td>
<td>1.17</td>
</tr>
<tr>
<td>2</td>
<td>4b</td>
<td>(\varepsilon)-CL</td>
<td>1:1:100</td>
<td>10</td>
<td>64</td>
<td>384</td>
<td>0.73</td>
<td>0.87</td>
<td>1.14</td>
</tr>
<tr>
<td>3</td>
<td>M1</td>
<td>(\varepsilon)-CL</td>
<td>1:1:100</td>
<td>10</td>
<td>43</td>
<td>258</td>
<td>0.49</td>
<td>0.52</td>
<td>1.14</td>
</tr>
<tr>
<td>4</td>
<td>4c</td>
<td>(\varepsilon)-CL</td>
<td>1:0:100</td>
<td>7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>M2</td>
<td>(\varepsilon)-CL</td>
<td>1:1:100</td>
<td>7</td>
<td>84</td>
<td>720</td>
<td>0.96</td>
<td>1.00</td>
<td>1.12</td>
</tr>
<tr>
<td>6</td>
<td>4c</td>
<td>(\varepsilon)-CL</td>
<td>1:1:100</td>
<td>3</td>
<td>83</td>
<td>1660</td>
<td>0.95</td>
<td>0.97</td>
<td>1.19</td>
</tr>
<tr>
<td>7</td>
<td>4c</td>
<td>(\varepsilon)-CL</td>
<td>1:2:100</td>
<td>3</td>
<td>89</td>
<td>1780</td>
<td>0.51</td>
<td>0.53</td>
<td>1.21</td>
</tr>
<tr>
<td>8</td>
<td>4c</td>
<td>(\varepsilon)-CL</td>
<td>1:4:100</td>
<td>3</td>
<td>85</td>
<td>1700</td>
<td>0.24</td>
<td>0.29</td>
<td>1.27</td>
</tr>
<tr>
<td>9</td>
<td>4c</td>
<td>(\varepsilon)-CL</td>
<td>1:2:200</td>
<td>6</td>
<td>89</td>
<td>890</td>
<td>1.02</td>
<td>1.09</td>
<td>1.21</td>
</tr>
<tr>
<td>10</td>
<td>4c</td>
<td>(\varepsilon)-CL</td>
<td>1:2:400</td>
<td>12</td>
<td>91</td>
<td>455</td>
<td>2.08</td>
<td>2.36</td>
<td>1.24</td>
</tr>
<tr>
<td>11</td>
<td>4c</td>
<td>(\varepsilon)-CL</td>
<td>1:2:600</td>
<td>15</td>
<td>93</td>
<td>372</td>
<td>3.19</td>
<td>3.32</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>4c</td>
<td>(\varepsilon)-CL</td>
<td>1:2:800</td>
<td>20</td>
<td>90</td>
<td>270</td>
<td>4.11</td>
<td>4.46</td>
<td>1.25</td>
</tr>
<tr>
<td>13</td>
<td>4c</td>
<td>(\varepsilon)-CL</td>
<td>1:2:1000</td>
<td>30</td>
<td>94</td>
<td>188</td>
<td>5.36</td>
<td>5.53</td>
<td>1.23</td>
</tr>
<tr>
<td>14</td>
<td>M2</td>
<td>(\varepsilon)-CL</td>
<td>1:2:200</td>
<td>6</td>
<td>69</td>
<td>73</td>
<td>0.79</td>
<td>0.89</td>
<td>1.21</td>
</tr>
<tr>
<td>15</td>
<td>M2</td>
<td>(\varepsilon)-CL</td>
<td>1:2:400</td>
<td>12</td>
<td>71</td>
<td>355</td>
<td>1.62</td>
<td>2.01</td>
<td>1.22</td>
</tr>
<tr>
<td>16</td>
<td>M2</td>
<td>(\varepsilon)-CL</td>
<td>1:2:600</td>
<td>16</td>
<td>74</td>
<td>296</td>
<td>2.54</td>
<td>2.95</td>
<td>1.26</td>
</tr>
<tr>
<td>17</td>
<td>M2</td>
<td>(\varepsilon)-CL</td>
<td>1:2:800</td>
<td>20</td>
<td>65</td>
<td>195</td>
<td>2.97</td>
<td>3.39</td>
<td>1.24</td>
</tr>
<tr>
<td>18</td>
<td>M2</td>
<td>(\varepsilon)-CL</td>
<td>1:2:1000</td>
<td>30</td>
<td>63</td>
<td>126</td>
<td>3.59</td>
<td>3.86</td>
<td>1.25</td>
</tr>
<tr>
<td>19</td>
<td>4a</td>
<td>L-LA</td>
<td>1:1:100</td>
<td>240</td>
<td>36</td>
<td>9</td>
<td>0.52</td>
<td>0.58</td>
<td>1.08</td>
</tr>
<tr>
<td>20</td>
<td>4b</td>
<td>L-LA</td>
<td>1:1:100</td>
<td>240</td>
<td>trace</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>21</td>
<td>4c</td>
<td>L-LA</td>
<td>1:1:100</td>
<td>10</td>
<td>20</td>
<td>120</td>
<td>0.29</td>
<td>0.27</td>
<td>1.08</td>
</tr>
<tr>
<td>22</td>
<td>4c</td>
<td>L-LA</td>
<td>1:1:100</td>
<td>15</td>
<td>42</td>
<td>168</td>
<td>0.60</td>
<td>0.72</td>
<td>1.07</td>
</tr>
<tr>
<td>23</td>
<td>4c</td>
<td>L-LA</td>
<td>1:1:100</td>
<td>30</td>
<td>74</td>
<td>148</td>
<td>1.07</td>
<td>1.34</td>
<td>1.12</td>
</tr>
<tr>
<td>24</td>
<td>4c</td>
<td>L-LA</td>
<td>1:1:100</td>
<td>45</td>
<td>89</td>
<td>119</td>
<td>1.28</td>
<td>1.70</td>
<td>1.14</td>
</tr>
<tr>
<td>25</td>
<td>4c</td>
<td>L-LA</td>
<td>1:1:100</td>
<td>60</td>
<td>97</td>
<td>97</td>
<td>1.40</td>
<td>1.89</td>
<td>1.22</td>
</tr>
<tr>
<td>26</td>
<td>4c</td>
<td>rac-LA</td>
<td>1:1:100</td>
<td>60</td>
<td>95</td>
<td>95</td>
<td>1.37</td>
<td>1.64</td>
<td>1.23</td>
</tr>
<tr>
<td>27</td>
<td>M2</td>
<td>L-LA</td>
<td>1:0:100</td>
<td>90</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>M2</td>
<td>L-LA</td>
<td>1:1:100</td>
<td>90</td>
<td>79</td>
<td>53</td>
<td>1.14</td>
<td>1.02</td>
<td>1.18</td>
</tr>
</tbody>
</table>

\(^{a}\) 25 \(\mu \)mol of Al complex in 2 mL toluene, and polymerization at 80 °C; \(^{b}\) Non-optimized turnover frequency calculated over the whole reaction time; \(^{c}\) Calculated \(M_{n,\text{theo}}=[\varepsilon \)-CL]_0/[OH]×conv.(\varepsilon \)-CL)×114.14+\(M_{\text{PrOH}} \); \(^{d}\) Calculated \(M_{n,\text{theo}}=[L-LA]_0/[OH]\times\text{conv.}(L-LA)\times144.13+M_{\text{PrOH}} \); \(^{f}\) Experimental \(M_n \) values were determined by GPC analysis in THF using polystyrene standards and corrected by the equation: \(M_n=0.58\times M_n^{(\text{GPC})} \) for PLA, and \(M_n=0.56\times M_n^{(\text{GPC})} \) for PCL. \(^{g} \) \(P_m=0.33 \).
Table S4 Synthesis of PLA-b-PCL copolymer by 4c/iPrOH system

<table>
<thead>
<tr>
<th>Entry</th>
<th>Complex</th>
<th>Time<sup>b</sup></th>
<th>(M_n,\text{GPC}(\times 10^4))</th>
<th>(M_n(\times 10^4))</th>
<th>(M_w/M_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLA-b-PCL<sup>e</sup></td>
<td>4c</td>
<td>1.5h(LA)+1h(CL)</td>
<td>4.0</td>
<td>2.12</td>
<td>1.34</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 25 μmol complex in toluene, iPrOH 1.0 equiv. to Al, monomer 5.0 mmol, 80 °C; ^b After LA reaction for 1.5 h, CL was added and reacted for the prescribed time; ^c GPC data determined by SEC in THF relative to polystyrene standards; ^d GPC data determined by SEC in THF relative to polystyrene standards corrected by the Mark–Houwink correction factor (\(M_n=M_n,\text{SEC} \times 0.56 \times \text{PCL\%} + M_n,\text{SEC} \times 0.58 \times \text{PLLA\%}\)); ^e the first block PLA with \(M_n,\text{GPC}=1.83 \times 10^4\), \(M_w/M_n=1.21\), conversion > 99%

Table S5. Experimental \(T_g\) of the CL/LA copolymers as a function of the mole fraction of \(\varepsilon\)-CL unit

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (h)</th>
<th>CL in copolymer<sup>b</sup> (%)</th>
<th>(T_g) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>14.5</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>21.8</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>45.1</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>50.0</td>
<td>-2.6</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 25 μmol of Al catalyst in 2 mL of toluene, iPrOH/[Al] = 2.0, [CL]/[LA]/[Al]=100:100:1, copolymerization at 80 °C; ^b CL in copolymer measured by \(^1\)H NMR.

Table S6. Calculate reactivity ratios for L-LA and \(\varepsilon\)-CL in Poly(LA-grad-CL) copolymers

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conv. (%)</th>
<th>X<sup>b</sup></th>
<th>Y<sup>c</sup></th>
<th>G<sup>d</sup></th>
<th>F<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.1</td>
<td>0.43</td>
<td>3.15</td>
<td>0.29</td>
<td>0.059</td>
</tr>
<tr>
<td>2</td>
<td>5.4</td>
<td>1.0</td>
<td>6.67</td>
<td>2.11</td>
<td>0.58</td>
</tr>
<tr>
<td>3</td>
<td>5.4</td>
<td>2.3</td>
<td>14.3</td>
<td>4.71</td>
<td>1.39</td>
</tr>
<tr>
<td>4</td>
<td>4.7</td>
<td>9.0</td>
<td>33.3</td>
<td>8.73</td>
<td>2.43</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 25 μmol of Al catalyst in 2 ml of toluene, [iPrOH]/[Al] = 2.0, 80 °C; The reactivity ratios were calculated using the nonlinear least squares (NLLS) method, the monomer composition in the obtained oligomer was examined at a low conversion (≤10%).

^b X = \(M_{LA}/M_{CL}\), \(M_{LA}\) and \(M_{CL}\) were defined as moles of monomer in the copolymerization reaction system;

^c Y was defined as the mole ratio of two kinds of monomer;

^d G = X(\(Y-1\))/Y;

^e F = X^2/Y^3.
<table>
<thead>
<tr>
<th>Run</th>
<th>LA:CL :Al:OH (mol:mol)</th>
<th>Conversion (%)</th>
<th>M_n^b/10^4</th>
<th>M_w/M_n^b</th>
<th>L_{CL}^c</th>
<th>L_{LA}^c</th>
<th>CL (mol %)~(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400:100:1:1</td>
<td>trace</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>200:100:1:1</td>
<td>29</td>
<td>0.84</td>
<td>1.31</td>
<td>5.25</td>
<td>27.6</td>
<td>24.7</td>
</tr>
<tr>
<td>3</td>
<td>100:100:1:1</td>
<td>41</td>
<td>1.12</td>
<td>1.39</td>
<td>3.36</td>
<td>20.8</td>
<td>21.2</td>
</tr>
<tr>
<td>4</td>
<td>100:200:1:1</td>
<td>46</td>
<td>1.38</td>
<td>1.37</td>
<td>4.61</td>
<td>29.1</td>
<td>17.8</td>
</tr>
<tr>
<td>5</td>
<td>100:400:1:1</td>
<td>19</td>
<td>0.69</td>
<td>1.41</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

~\(^a\) Reaction conditions: 25 µmol of Al catalyst and copolymerization at 80 °C for 8 h; ~\(^b\) Determined by GPC in THF using polystyrene as standard; ~\(^c\) Average sequences length of the caproyl unit and lactidyl unit was determined by ~\(^{13}\)C NMR; ~\(^d\) Monomer conversion was determined by ~\(^1\)H NMR. ~\(^d\) CL in the copolymer (mol %)
Fig. S1. Molecular structure of complex 4a with thermal ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. S2. Molecular structure of complex 4b with thermal ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. S3. 1H NMR spectrum of binuclear aluminum complexes 4c in the presence of iPrOH (toluene-d$_8$, 400 MHz)
Fig. S4. Methyne proton of the hydroxyl end group of the PLA-\(\text{b}\)-PCL copolymer (CDCl\(_3\), 25 °C).

Fig. S5. GPC profiles of PLA and PLA-\(\text{b}\)-PCL obtained by the 4c/iPrOH system (in THF at 25 °C).

Fig. S6. \(^{13}\)C NMR spectrum of PLA-\(\text{b}\)-PCL synthesized by 4c/iPrOH system (CDCl\(_3\), 25 °C).

Fig. S7. DSC curve of PLA-\(\text{b}\)-PCL prepared by 4c/iPrOH system.
Fig. S8. 1H NMR spectrum of poly(LA-grad-CL) copolymer (run 2, Table 3) (CDCl$_3$, 25°C).

Fig. S9. 13C NMR spectra (CDCl$_3$, 25°C) of the copolymers obtained at different conversion.

Fig. S10. Experimental T_g of the CL/LA copolymers as a function of the mole fraction of ε-CL unit.
Fig. S11. G-F plot for Poly(LA-grad-CL) copolymers by 4c/PrOH system.

Fig. S12. 1H NMR spectrum of binuclear aluminum complexes 4c (toluene-d$_8$, 400 MHz)

Fig. S13. 1H NMR spectrum of β-ketiminato ligand 3a (CDCl$_3$, 25 °C).
Fig. S14. 1H NMR spectrum of β-ketiminato ligand 3b (CDCl$_3$, 25 °C).

Fig. S15. 1H NMR spectrum of β-ketiminato ligand 3c (CDCl$_3$, 25 °C).

Fig. S16. 1H NMR spectrum of binuclear aluminum complexes 4a (CDCl$_3$, 25 °C).

Fig. S17. 1H NMR spectrum of binuclear aluminum complexes 4b (CDCl$_3$, 25 °C).
Fig. S18. 1H NMR spectrum of binuclear aluminum complexes 4c (CDCl$_3$, 25 °C).

Fig. S19. 1H NMR spectrum of β-ketiminato ligand for M1 (CDCl$_3$, 25 °C).

Fig. S20. 1H NMR spectrum of mononuclear aluminum complex M1 (CDCl$_3$, 25 °C).

Fig. S21. 1H NMR spectrum of mononuclear aluminum complex for M2 (CDCl$_3$, 25 °C).
Synthesis of aluminum complexes M1 and M2

Into a stirred solution of $\text{C}_6\text{H}_{11}\text{N}=\text{CHC}_4\text{H}_4\text{OH}$ (2.0 mmol) in toluene (10 mL), AlMe$_3$ (1 M hexane solution, 2.1 mL) was added drop-wise over 10 min. After stirred for 8 h the solution was concentrated and cooled to -20 °C, yellow solid was isolated by filter and recrystallized from mixture of toluene/hexane and afforded $[\text{C}_6\text{H}_{11}\text{N}=\text{CHC}_4\text{H}_4\text{O}]\text{Al(CH}_3\text{)}_2$ (M1) Yield: 92%. 1H NMR (400 MHz, CDCl$_3$) 7.88 (d, 1H, $\text{N} = \text{C-H}$), 7.67 (s, 1H, Ar-H), 7.33 (m, 2H, Ar-H), 7.18 (d, 1H, Ar-H), 3.22 (dd, 1H, CH-(CH$_2$)$_2$), 2.95–2.77 (m, 2H, -CH$_2$-), 2.62–2.47 (m, 2H, -CH$_2$-), 1.92 (t, 4H, -CH$_2$-CH), 1.80–1.02 (m, 6H), -0.71 (s, Al-CH$_3$, 6H). 13C NMR (100 MHz, CDCl$_3$): 166.33, 139.73, 133.29, 130.76, 127.15, 126.69, 125.93, 104.37, 67.35, 31.08, 28.69, 25.94, 25.56, 25.15, 24.5, -8.45.

Synthesis for $[\text{C(CH}_3)_3\text{CHN}=\text{CHC}_4\text{H}_4\text{O}]\text{Al(CH}_3\text{)}_2$ (M2) was performed according to the same procedure as that of M1 Yield: 88%. 1H NMR (400 MHz, CDCl$_3$) 7.95 (d, 1H, N = C-H), 7.51 (s, 1H, Ar-H), 7.42–7.25 (m, 2H, Ar-H), 7.19 (d, 1H, Ar-H), 3.22 (s, 2H -CH$_2$-CH), 2.95–2.78 (m, 2H, -CH$_2$-), 2.66–2.46 (m, 2H, -CH$_2$-), 1.01 (s, 9H, CH$_3$), -0.73 (d, 6H, Al-CH$_3$). 13C NMR (100 MHz, CDCl$_3$): 166.46, 139.45, 133.18, 130.87, 127.26, 126.75, 125.97, 106.16, 67.57, 33.97, 28.51, 25.84, 25.39, 25.17, -8.65.