Supplementary Information

Periodic Introduction of Hamilton Receptor into Polystyrene Backbone for Supramolecular Graft Copolymer with Regular Interval

_Sang-Ho Lee_a, Makoto Ouchia,b *, Sang-Won Kimc, and Mitsuo Sawamotoa,*

aDepartment of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

bPrecursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Kawaguchi, Saitama 332-0012, Japan

cDepartment of Polymer Science and Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 405-751, Republic of Korea

ouchi@living.polym.kyoto-u.ac.jp, sawamoto@star.polym.kyoto-u.ac.jp
Mathematical model chosen to determine K_{ass}: The data were fitted to the following equation to provide K_{ass}:

\[
\delta_{mix} = \delta_{ADADA} + \left(\delta_{\infty} - \delta_{ADADA} - \frac{\left(1 + \frac{1}{K_{ass}}\right)^2 - 4 [ADADA][DADDAD]}{2[ADADA]} \right)
\]

, where the experimental parameters are as follows,

[ADADA] and [DADDAD]: molar concentrations of ADADA– and DADDAD–functionalized compounds (i.e., initiators or polymers)

δ_{mix}: a chemical shift for NH proton of ADADA–functionalized compound for an equimolar mixture with DADDAD counterpart in 1H NMR spectrum (H^a in Figure 3);

δ_{ADADA}: a chemical shift for NH proton of ADADA–functionalized compound;

K_{ass}: an association constant;

δ_∞: a saturated chemical shift for NH proton of ADADA–functionalized compound when an excess molar of DADDAD counterpart was mixed. The value was calculated from curve fitting with third degree polynomial for plots with various mixing ratios.

Table S1. Parameters for K_{ass} Calculation in This Work

<table>
<thead>
<tr>
<th>Combination</th>
<th>[ADA] and [DAD]</th>
<th>δ_{mix}/ ppm</th>
<th>δ_{ADA}/ ppm</th>
<th>δ_∞/ ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PS$_{DADDAD}$8k)n-1 and PMMA${ADADA}$9ka</td>
<td>2.0×10^3 mol/L</td>
<td>12.17</td>
<td>8.51</td>
<td>13.07b</td>
</tr>
</tbody>
</table>

asee Figure 3 for the interaction analyses by 1H NMR ; bCalculated from curve fitting with third degree polynomial for plots with various mixing ratios (see Figure S1, respectively).
Table S2. Interaction analyses with DLS of \((\text{PS}_{\text{DADDAD}8k})_n^{-1} \) and equimolar mixture of \((\text{PS}_{\text{DADDAD}8k})_n^{-1} \) with PMMA\textsubscript{ADADA}5k or ADADA-free PMMAa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Samples</th>
<th>(R_h), nm (n = 5)</th>
<th>Averaged (R_h), nmb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((\text{PS}_{\text{DADDAD}8k})n^{-1} + \text{PMMA}{\text{ADADA}5k})</td>
<td>13.6</td>
<td>16.7</td>
</tr>
<tr>
<td>2</td>
<td>((\text{PS}_{\text{DADDAD}8k})_n^{-1} + \text{ADADA}-\text{free PMMA})</td>
<td>11.0</td>
<td>12.2</td>
</tr>
</tbody>
</table>

aAll samples were prepared in CHCl\textsubscript{3} at 25 °C: \([(\text{PS}_{\text{DADDAD}8k})_n^{-1}] = 2 \text{ mg/mL.} bThe number averaged hydrodynamic radius was estimated from selected 3 results excepting the maxium and minium value.
Figure S1. SEC curves (A) for Ru catalyzed living radical polymerization of styrene with Cl–DADDAD–Cl and radical coupling chain extension of the polystyrene precursor for (B) 24 h, (C) 48 h, and (D) 72 h. Polymerization: [Monomer]₀ = 4.0 M; [Cl–DADDAD–Cl]₀ = 40 mM; [Ru(Cp*)Cl(PPh₃)₂]₀ = 4.0 mM; [n-BuNH₂]₀ = 40 mM in toluene at 100 °C. Radical coupling chain extension: [Precursor] = 40 mM; [Ru(Cp*)Cl(PPh₃)₂]₀ = 12 mM; [NH₂–(CH₂)₆–NH₂]₀ = 80 mM; [P(n-Bu)₃]₀ = 80 mM in toluene/EtOH = 3/1 v/v % at 100 °C.
Figure S2. Plots of chemical shift change for NH proton of PMMA$_{ADADA}^{9k}$ mixed with (PS$_{DADDAD}^{8k}$)$_n^{-1}$ of various ratios in 1H NMR spectrum (see Figure 3) to estimate δ_∞ for K_{ass}.
Figure S3. DSC thermograms (2nd heating process at 10 °C/min) of (A) DADDAD-free PS6k, (B) PS$_{DADDAD8k}$, (C) DADDAD-free PS18k, (D) DADDAD-free PS38k, and (E) (PS$_{DADDAD8k}$)$_n$.

![Graph showing DSC thermograms for different PS samples](image)