Supplementary Information for:

Control of Hard Block Segments of Methacrylate-based Triblock Copolymers for Enhanced Electromechanical Performance

Kie Yong Cho, a,b Ara Cho, a Hyun-Ji Kim, a Sang-Hee Park, a Chong Min Koo, a Young Je Kwark, c Ho Gyu Yoon, b Seung Sang Hwang a,d and Kyung-Youl Baek a,d,*

a Materials Architecting Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.
b Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
c Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 156-743, Korea.
d Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 34113, Korea.

Corresponding Author E-mail: baek@kist.re.kr (K. –Y. Baek)
Scheme S1. Synthesis of (A) MMA-b-DMA-b-MMA (PMDM) and (B) tBMA-b-DMA-b-tBMA (PTDT) triblock copolymers by sequential living radical polymerization, employing EDBCPA difunctional initiator coupled with Ru-catalyst and Bu$_3$N. The thermolysis of PTDT at 200 °C introduces acid groups into the hard block segment of the triblock copolymer leading to MAA-b-DMA-b-MAA (PADA) in (B) bottom.
Fig. S1 SEC curves of PTMDMT and PAMDMA measured in THF eluent.
Fig. S2 (A) SEC curves and (B) 1H NMR spectra of PDMA and PMDM, (C) SEC curves and (D) 1H NMR spectra of PDMA, PTDT, and PADA. SEC measurement is conducted in THF eluent. 1H NMR measurement is performed at room temperature in CDCl$_3$.

The PMDM and PTDT triblock copolymer with PDMA macroinitiator were investigated for its molecular weight and MWD by the use of SEC measurement in Fig. S2 (A) and (C). 1H NMR spectra of PMDM and PTDT were shown in Fig. S2 (B) and (D). The results from SEC curves and 1H NMR spectra demonstrated that this Ru based ATRP system properly suited for PMDM and PTDT copolymerization. Thermolysis of PTDT was performed at 200 $^\circ$C for 60 min to dissociate the tert-butyl group of tBMA units leading to generating PADA.
triblock copolymer. This result was evaluated by measuring SEC in Fig. S2 (C). The number averaged molecular weight of PADA ($M_n = 84,000$) was a little decreased in comparison to that of PTDT ($M_n = 92,000$) because of loss of tert-butyl groups. 1H NMR spectrum of PADA in Fig. S2 (D) exhibited clear peak disappearance at 1.35 ppm (g) originated from tert-butyl groups of PTDT indicating that thermolysis condition at 200 °C for 60 min was effective to generate PADA triblock copolymer.

![Fig. S3 DSC curves of PTMDMT3, PMDM, PTDT, PAMDMA3, and PADA measured in the temperature range from -70 °C to 150 °C (1st run curves).](image.png)
Fig. S4 Transverse strain changes as a function of electric field: PTMDMT, PMDM,\(^1\) and PDMS.\(^2\)

References
