Supporting Information

Novel Alkoxyamines for the Successful Controlled Polymerization of Styrene and Methacrylates

Alexandre Simula, Miren Aguirre, Nicholas Ballard, Antonio Veloso, José R. Leiza, Steven van Es and José M. Asua

1POLYMAT and Kimika Aplikatua Saila, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018, Donostia/San Sebastián, Spain

2Dispoltec BV, PO Box 331, 6160 AH Geleen, The Netherlands

Conversion Determination for Polymerization of Styrene in the Presence of Alkoxyamine

\[
\text{Conversion} = \frac{m_{\text{monomer}} + m_{\text{alkoxyamine}} + m_{\text{solvent}}}{m_{\text{monomer}} + m_{\text{alkoxyamine}}} \times \frac{m_{\text{dry capsule}} - m_{\text{tare}}} {m_{\text{wet capsule}} - m_{\text{tare}}}
\]

Equation (1)

Polymerization of Styrene in the Presence of Alkoxyamine (B)

In a typical procedure, Alkoxyamine (B) (857 mg, 2.52 mmol), styrene (87.6 g, 333 equiv, 75 wt.%) and tert-butylbenzene (29.5 g) were charged into a three-neck 250-mL RBF fitted with a stirring bar, thermometer and rubber seals. The mixture was stirred and deoxygenated with nitrogen for 30 minutes and subsequently placed in a pre-heated oil bath at 136 °C. The solution was left to polymerize at 126 °C for at least 5 hours. Samples for conversion and SEC analysis were carefully taken from the polymerization mixture via a deoxygenated syringe. Monomer conversion was calculated from gravimetric analysis using Equation 1.

After polymerization, the solution was diluted in THF, precipitated in MeOH and dried under vacuum to yield a white solid.
Influence of temperature when using Alkoxyamine (B)

Figure S1. Polymerization of styrene ([Alkoxyamine (B)]:[M] 1:333 with a monomer concentration of 75 wt.% in tert-butylbenzene), at different temperatures (110, 126 and 136 °C). Evolution of Ln([M]₀/[M]) versus time (bottom) and evolutions of observed molecular weight (M_n, SEC-MALS, dotted lines corresponding to the theoretical evolutions) and dispersity values (D) with monomer conversion (top).
Influence of DP_n, when Using Alkoxyamine (A)

For comparison, polymerization of styrene for a targeted $DP_n = 333$ was also conducted at 50 wt.% monomer in tert-butylbenzene (Figure S2).

Figure S2. Polymerization of styrene ([Alkoxyamine]:[M] 1:333 with a monomer concentration of 50 wt.% in tert-butylbenzene), at 126 °C. Evolution of $\ln([M]_0/[M])$ versus time (bottom) and evolutions of observed molecular weight (M_n, SEC-MALS, dotted lines corresponding to the theoretical evolutions) and dispersity values (D) with monomer conversion (top).
Figure S3. Polymerization of styrene ([Alkoxyamine (A)]:[M]:[Ac₂O]= 1:999:2 with a monomer concentration of 50 wt.% in tert-butylbenzene) at 126 °C. Evolution of Ln([M]₀/[M]) versus time (bottom) and evolutions of observed molecular weight (M_n, SEC-MALS, dotted lines corresponding to the theoretical evolutions) and dispersity values (D) with monomer conversion (top).

Polymerization of Styrene in the Presence of BlocBuilder

In a typical procedure, BlocBuilder (439 mg, 1.14 mmol), styrene (40 g, 333 equiv, 75 wt.%) and tert-butylbenzene (13.3 g) were charged into a three-neck 250-mL RBF fitted with a stirring bar, thermometer and rubber seals. The mixture was stirred and deoxygenated with nitrogen for 30 minutes and subsequently placed in a pre-heated oil bath at 136 °C. The solution was left to polymerize at 126 °C for at least 5 hours. Samples for conversion and SEC analysis were carefully taken from the polymerization mixture via a deoxygenated syringe. Monomer conversion was calculated from gravimetric analysis using Equation 1.

After polymerization, the solution was diluted in THF, precipitated in MeOH and dried under vacuum to yield a white solid.
Polymerization of Styrene in the Presence of Alkoxyamine (C)

In a typical procedure, Alkoxyamine (C) (662 mg, 2.52 mmol), styrene (87.6 g, 333 equiv, 75 wt.%) and tert-butyl benzene (29.5 g) were charged in a three-neck 250-mL RBF fitted with a stirring bar, thermometer and rubber seals. The mixture was stirred and deoxygenated with nitrogen for 30 minutes and subsequently placed in a pre-heated oil bath at 136 °C. The solution was left to polymerize at 126 °C for at least 5 hours. Samples for conversion and SEC analysis were carefully taken from the polymerization mixture via a deoxygenated syringe. Monomer conversion was calculated from gravimetric analysis using Equation 1.

After polymerization, the solution was diluted in THF, precipitated in MeOH and dried under vacuum to yield a white solid.

Nitroxide Exchange for a Polystyrene Macro-alkoxyamine (A) with TEMPO

![Figure S4. SEC (THF) traces of poly(styrene) macro-alkoxyamine with Alkoxyamine (A) functionality before (blue) and after (orange) nitroxide exchange with TEMPO.](image)
Figure S5. DOSY NMR (CDCl$_3$, 400 MHz) of poly(styrene) mediated by Alkoxyamine (A).

Figure S6. DOSY NMR (CDCl$_3$, 400 MHz) of poly(styrene) mediated by Alkoxyamine (A) after nitrooxide exchange with TEMPO.
Chain Extension for a Poly(styrene) Macro-alkoxyamine (B) with Styrene (moderate conversion of styrene for the macro-alkoxyamine)

A poly(styrene) macro-alkoxyamine (B) (242 mg, 1 equiv, $M_n = 2700$ g.mol$^{-1}$), prepared via the pre-detailed procedure (target $DP_n = 50$ stopped at 60% conversion) was added to a 50-mL RBF fitted with rubber seals. Styrene (3g, 19 mmol, 200 equiv) and tert-butylbenzene (3 g) were added to the RBF with a magnetic stirring bar and the contents were left to stir and deoxygenate with nitrogen for 30 minutes. Subsequently, the mixture was placed in a pre-heated oil bath at 136 °C (in order to have an internal temperature of 126 °C) and left to polymerize overnight. Then, a sample was isolated for gravimetric analysis, whilst the remaining solution was diluted in THF, precipitated twice in MeOH and dried under vacuum to yield a white solid.
Figure S8. SEC traces (THF eluent) of chain extension of poly(styrene) mediated by Alkoxyamine (B) with styrene ([Macro-alkoxyamine (B)]:[M] 1:200 with a monomer concentration of 50 wt.% in tert-butylbenzene at 126 °C).

Chain Extension for a Poly(styrene) Macro-alkoxyamine (B) with Styrene (high conversion of styrene for the macro-alkoxyamine)

A poly(styrene) macro-alkoxyamine (B) (242 mg, 1 equiv, $M_n = 2000 \text{ g.mol}^{-1}$), prepared via the pre-detailed procedure (target $DP_n = 50$ stopped at >95% conversion) was added to a 50-mL RBF fitted with rubber seals. Styrene (2g, 19 mmol, 200 equiv) and tert-butylbenzene (2 g) were added to the RBF with a magnetic stirring bar and the contents were left to stir and deoxygenate with nitrogen for 30 minutes. Subsequently, the mixture was placed in a pre-heated oil bath at 136 °C (in order to have an internal temperature of 126 °C) and left to polymerize overnight. Then, a sample was isolated for gravimetric analysis, whilst the remaining solution was diluted in THF, precipitated twice in MeOH and dried under vacuum to yield a white solid.

Figure S9. SEC traces (THF eluent) of chain extension of poly(styrene) mediated by Alkoxyamine (B) with styrene. (Left) ([Macro-alkoxyamine (B)]:[M] 1:200 with a monomer concentration of 50 wt.% in tert-butylbenzene at 126 °C).
Nitroxide Exchange for a Poly(styrene) Macro-alkoxyamine (B) with TEMPO

Alkoxyamine (B) (651 mg, 2.52 mmol), styrene (10 g, 50 equiv, 75 wt.%) and tert-butylbenzene (3.3 g) were charged into a 2-neck 50-mL RBF fitted with a stirring bar, thermometer and rubber seals. The mixture was stirred and deoxygenated with nitrogen for 30 minutes and subsequently placed in a pre-heated oil bath at 136 °C. The solution was left to polymerize at 126 °C for 4 hours. Monomer conversion (95 %) was calculated from gravimetric analysis using Equation 1.

After polymerization, the solution was diluted in THF, precipitated twice in MeOH and dried under vacuum to yield a white solid. Subsequently, the nitroxide exchange was performed in a similar fashion as for Alkoxyamine (A).

Figure S10. 13C NMR (CDCl₃, 100 MHz) of poly(styrene) mediated by Alkoxyamine (B) before (left) and after (right) nitroxide exchange with TEMPO.

Chain Extension for a Poly(styrene) Macro-alkoxyamine (B) with Methyl Methacrylate

A poly(styrene) macro-alkoxyamine (B) (1.5 g, 1 equiv), prepared via the pre-detailed procedure, was added to a 50-mL RBF fitted with rubber seals. MMA (2.5 g, 19.9 mmol, 400 equiv) and tert-butylbenzene (4.5 g) were added to the RBF with a magnetic stirring bar and the contents were left to stir and deoxygenate with nitrogen for 30 minutes. Subsequently, the mixture was placed in a pre-heated oil bath at 96 °C (in order to have an internal temperature of 90 °C) and left to polymerize overnight. Then, a sample was isolated for gravimetric analysis,
whilst the remaining solution was diluted in THF, precipitated twice in MeOH and dried under vacuum to yield a white solid.

Figure S11. SEC traces (THF eluent) of chain extension of poly(styrene) mediated by Alkoxyamine (B) with methyl methacrylate ([Macro-alkoxyamine]:[M] 1:400 with a monomer concentration of 25 wt.% in tert-butylbenzene at 90 °C).

Chain extension for a Polystyrene Macro-alkoxyamine (B) with n-Butyl Methacrylate

A poly(styrene) macro-alkoxyamine (B) (1.2 g, 1 equiv), prepared via the pre-detailed procedure ($M_n^{\text{target}} = 35000 \text{ g.mol}^{-1}$, 78% conversion), was added to a 50-mL RBF fitted with rubber seals. BMA (5 g, 35 mmol, 800 equiv) and tert-butylbenzene (5 g) were added to the RBF with a magnetic stirring bar and the contents were left to stir and deoxygenate with nitrogen for 30 minutes. Subsequently, the mixture was placed in a pre-heated oil bath at 136 °C (in order to have an internal temperature of ca. 126 °C) and left to polymerize overnight. Then, a sample was isolated for gravimetric analysis, whilst the remaining solution was diluted in THF, precipitated twice in MeOH and dried under vacuum to yield a white solid.

In order to have a better insight of the end group fidelity, a similar procedure was employed, using a poly(styrene) macro-alkoxyamine (B) (250 mg, 7.0×10^{-5} mol, $M_n = 2800 \text{ g.mol}^{-1}$) and BMA (500 mg, 3.5 mmol, 50 eq). The resulting polymer ($M_n = 4400 \text{ g.mol}^{-1}$) was analysed by 1H NMR, COSY, HSQC and SEC analyses.
Figure S12. 1H NMR (CDCl$_3$, 400 MHz) of poly(styrene) mediated by Alkoxyamine (B), M_n = 2800 g.mol$^{-1}$.

Figure S13. HSQC (CDCl$_3$) of poly(styrene) mediated by Alkoxyamine (B), M_n = 2800 g.mol$^{-1}$.
In Figure S13, the correlation between the CH₂-CH₂-CH₂ peaks at 0.98 ppm and the CH₂-CH₂-CH₂ peaks at 26 ppm, as well as the correlation between the C(CH₃)₂CN peaks at 1.18 ppm and the C(CH₃)₂CN peaks at 28 ppm highlights the presence of the α,ω-end groups of Alkoxyamine (B) on the poly(styrene) chain.

Figure S14. ¹H NMR (CDCl₃, 400 MHz) of PS-b-PBMA, M_n^{th} = 4400 g.mol⁻¹.
Figure S15. COSY NMR (CDCl₃, 400 MHz) of PS-\textit{b}-PBMA, $M_n^{\text{th}} = 4400$ g.mol-1.

The 1H-1H correlations observed in Figure S15 support the proton assignments of PS-\textit{b}-PBMA in Figure S14.
Figure S16. HSQC NMR (CDCl₃, 400 MHz) of PS-\textit{b}-PBMA, $M_{n}^{\text{th}}=4400$ g.mol⁻¹.

The 1H-13C correlations observed in Figure S16 support the carbon assignments of PS-\textit{b}-PBMA in Figure S17.

Figure S17. 13C NMR (CDCl₃, 100 MHz) of PS-\textit{b}-PBMA, $M_{n}^{\text{th}}=4400$ g.mol⁻¹.
Polymerization of Methyl Methacrylate in the Presence of Alkoxyamine (B)

In a typical procedure, Alkoxyamine (B) (169 mg, 1 equiv), MMA (5 g, 49.9 mmol, 100 equiv, 50 wt.%) and toluene (5 g) were charged into a 50-mL RBF fitted with a stirring bar and rubber seal. The mixture was stirred and deoxygenated with nitrogen for 30 minutes and subsequently placed in a pre-heated oil bath at 96 °C. The solution was left to polymerize at 90 °C for 4h, reaching a monomer conversion of 70 %.

After polymerization, the solution was diluted in THF, precipitated twice in MeOH and dried under vacuum to yield a white solid.

Chain Extension for a Poly(methyl methacrylate) Macro-alkoxyamine (B) with Styrene

A poly(MMA) macro-alkoxyamine (B) (523 mg, 1 equiv), prepared via the pre-detailed procedure, was added to a 50-mL RBF fitted with rubber seals. Styrene (3 g, 28.8 mmol, 400 equiv) and tert-butylbenzene (3 g) were added to the RBF with a magnetic stirring bar and the contents were left to stir and deoxygenate with nitrogen for 30 minutes. Subsequently, the mixture was placed in a pre-heated oil bath at 136 °C (in order to have an internal temperature of 126 °C) and left to polymerize overnight. Then, a sample was isolated for gravimetric analysis, whilst the remaining solution was diluted in THF, precipitated twice in MeOH and dried under vacuum to yield a white solid.