Electronic Supporting Information for

Poly(phenylene-ethynylene-\textit{alt}-tetraphenylethene) Copolymers:
Aggregation Enhanced Emission, Induced Circular Dichromism, Tunable
Surface Wettability and Sensitive Explosive Detection

Xiao Wanga, Wenjie Wanga, Yanmei Wanga, Jing Zhi Sun** and Ben Zhong Tang **abc

a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China. E-mail: sunjz@zju.edu.cn.

b Guangdong Innovative Research Team, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

c Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. E-mail: tangbenz@ust.hk
Figure S1. 1H NMR spectrum of BETPE in CDCl$_3$.

Figure S2. 13C NMR spectrum of BETPE in CDCl$_3$.
Figure S3. 1H NMR spectrum of **PFDI** in CDCl$_3$. The solvent peak was marked with asterisks.

Figure S4. 13C NMR spectrum of **PFDI** in CDCl$_3$.

Chemical shift (ppm)
Figure S5. 19F NMR spectrum of PFDI in CDCl$_3$.

Figure S6. HRMS of the PFDI. Calculated: 539.8143. Found: 539.8151
Figure S7. 1H NMR spectrum of the model compound in CDCl$_3$. The solvent peak was marked with asterisks.

Figure S8. FTIR spectrum of the model compound.
Figure S9. 1H NMR spectrum of intermediate in CDCl$_3$. The solvent peak was marked with asterisks.

Figure S10. 1H NMR spectrum of M1 in CDCl$_3$. The solvent peak was marked with asterisks.
Figure S11. FTIR spectrum of M1 in thin film.

Figure S12. HRMS of M1. Calculated: 257.2355. Found: 258.2446.
Figure S13. 1H NMR spectrum of P0 in CDCl$_3$.

Figure S14. 19F NMR spectra of (A) P0 and (B) P1 in CDCl$_3$.
Figure S15. 1H NMR spectrum of P1 in CDCl$_3$.

Figure S16. 1H NMR spectrum of P2 in CDCl$_3$. The solvent peak was marked with asterisks.
Figure S17. (A) PL spectra of P1 in THF/water mixtures with different water fractions. Concentration: 10 μM, λ_{ex} = 382 nm. (B) Plot of peak PL intensity of P1 in THF/water mixtures with different water fractions.
Figure S18. Quantum yield of P1 in THF/water mixture with different water fractions. P1 concentration: 10 μM, λex = 382 nm. Aqueous solution of quinine sulfonate (Φ = 30%) was used as the standard of fluorescence quantum yield.

Figure S19. Quantum yield of P2 in THF/water mixture with different water fractions. P2 concentration: 10 μM, λex = 377 nm. Aqueous solution of quinine sulfonate (Φ = 30%) was used as the standard of fluorescence quantum yield.
Figure S20. Thermal gravity analysis of P0, P1 and P2 under N₂ atmosphere with a heating rate of 10 °C/min.
Figure S21. (A) PL spectra of P1 in THF/water mixture (1:9 by volume) with different amount of PA. Polymer concentration: 10 μM, $\lambda_{ex} = 382$ nm. (B) Stern-Volmer plot of $I_0/I - 1$ versus [PA] in THF/water mixture with $f_w = 90\%$. I = peak intensity at [PA] $\neq 0$ mM and I_0 = peak intensity at [PA] $= 0$ mM.
Figure S22. (A) PL spectra of P2 in THF/water mixtures (1:9 by volume) with different amount of PA. Polymer concentration: 10 μM. Excitation wavelength: 377 nm. (B) Stern-Volmer plots of I_0/I^{-1} versus [PA] in THF/water mixtures with $f_w = 90\%$. $I = \text{peak PL intensity at } [\text{PA}] \neq 0 \text{ mM}, \text{ and } I_0 = \text{peak PL intensity at } [\text{PA}] = 0 \text{ mM}.$