Supporting Information

Manganese Protoporphyrin IX Reconstituted Myoglobin Capable of Epoxidation of C=C Bond with Oxone®

Yuan-Bo Cai, a Si-Yu Yao, a Mo Hu b, Xiaoyun Liu*, b and Jun-Long Zhang** a

a Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
Fax: (+86) 10-62767034
E-mail: zhangjunlong@pku.edu.cn

b Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Fax: (+86) 10-62759813
E-mail: xiaoyun.liu@pku.edu.cn
Table of Contents

1. Kinetic studies of His3 MnIIIMb reacted with 20 equiv KHSO\textsubscript{5} 3
2. Kinetic studies of F43H MnIIIMb reacted with 200 equiv KHSO\textsubscript{5} 4
3. Kinetic studies of L29H MnIIIMb reacted with 200 equiv KHSO\textsubscript{5} 5
4. Kinetic studies of H64F MnIIIMb reacted with 200 equiv KHSO\textsubscript{5} 6
5. Kinetic studies of F43H/H64F MnIIIMb reacted with 200 equiv KHSO\textsubscript{5} 7
6. Kinetic studies of L29H/H64F MnIIIMb reacted with 200 equiv KHSO\textsubscript{5} 8
7. Kinetic studies of L29H/F43H/H64F MnIIIMb reacted with 200 equiv KHSO\textsubscript{5} ... 9
8. ESI-MS of apo His3 Mb with 20 equiv KHSO\textsubscript{5} ... 10
9. LC/MS peaks of oxidized/unoxidized peptide HPGDFGADAQGAMNK 11
10. Fragmentation patterns of peptide HPGDFGADAQGAM(Ox)NK 13
11. 1H NMR of styrene epoxidation catalyzed by His3 MnIIIMb 14
12. Conversion and yield of styrene epoxidation at different pHs 15
Figure S1 Kinetic studies of 30 μM His3 MnIIIMb reacted with 20 equiv KHSO$_5$ in PBS buffer (pH=7.4). Inset: Time course plots of absorbance at 410 nm, and corresponding rate constants of Mn=O formation.
Figure S2 Kinetic studies of 30 μM F43H MnIIIMb reacted with 200 equiv KHSO\textsubscript{5} in PBS buffer (pH=7.4).
Figure S3 Kinetic studies of 30 μM L29H MnIII Mb reacted with 200 equiv KHSO5 in PBS buffer (pH=7.4).
Figure S4 Kinetic studies of 30 μM H64F MnIIIMb reacted with 200 equiv KHSO\textsubscript{5} in PBS buffer (pH=7.4).
Figure S5 Kinetic studies of 30 μM F43H/H64F MnIII Mb reacted with 200 equiv KHSO₃ in PBS buffer (pH=7.4).
Figure S6 Kinetic studies of 30 μM L29H/H64F MnIII Mb reacted with 200 equiv KHSO$_5$ in PBS buffer (pH=7.4).
Figure S7 Kinetic studies of 30 μM L29H/F43H/H64F MnIIIMb reacted with 200 equiv KHSO$_5$ in PBS buffer (pH=7.4).
Figure S8 ESI-MS of apo His3 Mb with 20 equiv KHSO$_3$ after reacting for 3 min.
Figure S9. Retention times and peak areas of (a) oxidized and (b) unoxidized peptide HPGDFGADAQGAMNK in LC/MS. In each graph, A-D represent apo-His3 Mb with Oxone®, His3 MnIII Mb without any oxidants, His3 MnIII Mb with Oxone®, and His3 MnIII Mb with H₂O₂, respectively.
Figure S10. Fragmentation patterns of peptide from HPGDFGADAQGAM(Ox)NK the digestion of His3 MnIIIMb reacted with KHSO$_5$.
Figure S11. 1H NMR after the reaction of styrene and Oxone® catalyzed by His3 MnIIIMb.
Figure S12. Conversion of epoxidation (red) and yield of styrene oxide (black) at different pHs. Conversion was calculated by 1-(unreacted styrene/total added styrene). Yield was based on styrene oxide generated/total added styrene.