Electrospun carbon nanofiber@CoS$_2$ core/sheath hybrid as efficient all-pH hydrogen evolution electrocatalyst

Electronic Supplementary Information

Huahao Gu,a Yunpeng Huang,a Lizeng Zuo,a Wei Fanb and Tianxi Liua,b

a State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China. E-mail: txliu@fudan.edu.cn, Tel: +86-21-55664197; Fax: +86-21-65640293.

b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China. E-mail: weifan@dhu.edu.cn
Calculation of loading ratio of the CoS$_2$ in CNF@CoS$_2$ hybrid:

Making a hypothesis that the mass percentage of CNF in CNF@CoS$_2$ hybrid is x while that of CoS$_2$ in CNF@CoS$_2$ hybrid is y. Consequently, $x + y = 1$.

From the TGA curve of pure CoS$_2$, it can be found that through a complex phase change process, pure CoS$_2$ remains 74.3% of its original weight. In addition, from the TGA curve of pure CNF, it can be concluded that CNF has almost burned out at 700 °C in air atmosphere. Consequently, for CNF@CoS$_2$ hybrid with the residue weight percentage of 55.6%, equation can be listed as follows, $y \times 74.3\% + x \times 0 = 1 \times 55.6\%$.

According to the above two equations, y can be calculated as 74.8 wt% while x is 25.2 wt%, illustrating that CoS$_2$ accounts for the mass ratio of 74.8 wt% in the CNF@CoS$_2$ hybrid.
Figure captions:

Fig. S1 FESEM image of CNF.

Fig. S2 FESEM image of CNF@CoS$_2$-3 hybrid and its corresponding EDS mapping images.

Fig. S3 FESEM image of CNF@CoS$_2$-9 hybrid in higher magnification.

Fig. S4 FESEM image of CoS$_2$.

Fig. S5 XRD patterns of the products collected after thermal treatment of CNF@CoS$_2$-3 hybrid at 700 °C and 900 °C.

Fig. S6 Plots showing the extraction of the double layer capacitance (C_{dl}) for CNF@CoS$_2$-1 and CNF@CoS$_2$-9 hybrids at 0.2 V.

Fig. S7 Nyquist plots of CNF@CoS$_2$-3 hybrid at various overpotentials in 0.5 M H$_2$SO$_4$.

Fig. S8 FESEM image of CNF@CoS$_2$-3 hybrid after cycling for 2000 s at low and high magnifications.

Fig. S9 FESEM image of CNF@CoS$_2$-3 hybrid after cycling test.

Fig. S10 Time dependence of the current density for pure CoS$_2$ modified GCE recorded at -0.17 V versus RHE in 0.5 M H$_2$SO$_4$ solution.
Fig. S4
Fig. S5
Fig. S6
Fig. S8
Fig. S9

(residual Nafion solution in white arrow)
Fig. S10