Supporting Information

EuSn$_2$As$_2$: An Exfoliatable Magnetic Layered Zintl-Klemm Phase

M. Q. Arguilla, N. D. Cultrara, Z. J. Baum, S. Jiang, R. D. Ross and J. E. Goldberger*

1Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210-1340, United States

![Figure S1. Powder XRD Rietveld refinement results for EuSn$_2$As$_2$ using TOPAS.](image)

Table S1. Selected bond lengths based on the refined EuSn$_2$As$_2$ structure.

<table>
<thead>
<tr>
<th>Bond Length (Å)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn-As (3x)</td>
<td>2.7761(3)</td>
</tr>
<tr>
<td>Eu-As (6x)</td>
<td>3.1019(4)</td>
</tr>
</tbody>
</table>
Figure S2. X-Ray Fluorescence verification of the Eu:Sn and Sn:As stoichiometry in EuSn$_2$As$_2$. Different ratios of Eu$_2$O$_3$ and elemental Sn (Eu:Sn) and elemental Sn and As (Sn:As) were used to prepare a standard calibration curve.

Figure S3. Field-cooled temperature-dependent magnetic susceptibility of EuSn$_2$As$_2$ with the a/b-axis (blue) and c-axis (red) parallel to the field showing the standard deviation.
Figure S4. Curie-Weiss fit corresponding to the ZFC inverse susceptibility of the EuSn$_2$As$_2$ crystal with its c-axis oriented parallel to the applied 0.01 T field.

Figure S5. Temperature-dependent magnetic susceptibility of EuSn$_2$As$_2$ with the c-axis parallel to the applied field of 5T.
Figure S6. AFM images and height profiles of mechanically-exfoliated EuSn₂As₂ onto 285 nm SiO₂/Si.