Electronic Supporting Information

Towards Hydroxamic acid Linked Zirconium Metal–Organic Frameworks

Carla F. Pereira, a,b,c Ashlee J. Howarth, c Nicolaas A. Vermeulen, c Filipe A. Almeida Paz, b João P. C. Tomé, a,d Joseph T. Hupp c,* and Omar K. Farha c,e,*

a Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
b Department of Chemistry & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
c Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
d CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
e Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

To whom correspondence should be addressed:

*Joseph T. Hupp
E-mail: j-hupp@u.northwestern.edu

*Omar K. Farha
E-mail: o-farha@northwestern.edu

Fax: (847)-467-1425. Telephone: (847)-491-3504.
Table of Contents

1 – Experimental section ..3
 1.1 – Synthesis of benzene-1,4-dihydroxamic acid (H₂BDHA) ..3

2 – Characterization ...6

3 – Stability tests ..6
1 - Experimental section

1.1 – Synthesis of benzene-1,4-dihydroxamic acid (H₂BDHA)

![Scheme S1](image)

Figure S1 – 1H NMR (600 MHz) spectrum of benzene-1,4-dihydroxamic acid in DMSO-d_6.
Figure S2 – 13C NMR (151 MHz) spectrum of benzene-1,4-dihydroxamic acid in DMSO-d_6.
Figure S3 – ESI+-TOF mass spectrum of benzene-1,4-dihydroxamic acid.
2 – Characterization

Figure S4 – TGA data for UiO-66 and UiO-66-H₂BDHA.

3 – Stability tests

Figure S5 – (a) PXRD patterns obtained for UiO-66 (made with HCl) and UiO-66-H₂BDHA in the evaluation of their stability at different pH.
Figure S6 – PXRD patterns obtained for defect-free UiO-66 in the evaluation of its stability at different pH.

Figure S7 – N₂ isotherms of defect-free UiO-66 obtained in the stability studies at different pH.
Table S1 – Brunauer–Emmett–Teller (BET) areas of the materials used in the stability tests at different pH.

<table>
<thead>
<tr>
<th>Material</th>
<th>BET area (m2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original material</td>
</tr>
<tr>
<td>UiO-66</td>
<td>1580</td>
</tr>
<tr>
<td>UiO-66-H$_2$BDHA</td>
<td>1050</td>
</tr>
<tr>
<td>UiO-66 (acetic acid)</td>
<td>1190</td>
</tr>
</tbody>
</table>