Supporting Information

Enantioselective gold-catalyzed intermolecular [2+2]-cycloadditions of 3-styrylindoles with N-allenyl oxazolidinone

Haoxiang Hu, Yidong Wang, Deyun Qian, Zhan-Ming Zhang, Lu Liu* and Junliang Zhang*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.

Fax: (+86)-021-6223-3213; E-mail: lliu@chem.ecnu.edu.cn, jlzhang@chem.ecnu.edu.cn

Table Contents

1. General information.. S2
2. Optimization of conditions... S3
3. Synthesis of Ligands (S, R,)-X1-X8... S4
4. Synthesis of substrates 1a-1t and 2... S10
5. General procedure for the [2+2] cycloaddition and copies of HPLC data .. S16
6. References.. S46
7. X-ray crystal data... S46
8. Copies of NMR spectra for Ligands, substrates and [2+2] adducts.. S47
1. General Information

1H NMR spectra, 13C NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl$_3$. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. Data for 1H NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constant (Hz), and intergration. Data for 13C NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CDCl$_3$: 77.00 ppm).

Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Dichloromethane were freshly distilled from CaH$_2$; THF was freshly distilled from sodium metal prior to use; AgOTf, AgNTf$_2$, AgBF$_4$, and AgCH$_3$O$_3$S were purchased from Alfa-Aesar Company and used directly. The $[\alpha]_D$ was recorded using PolAAr 3005 High Accuracy Polarimeter. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. The ee was recorded using UltiMate 3000 HPLC from Dionex Company.
2. Optimization of conditions

a. Screening of ligands.

\[
\begin{align*}
\text{Ph}_3 \text{C} & \quad + \quad \text{Ph}_3 \text{C} \\
1a & \quad 0.11 \text{ mmol} & 2 & \quad 0.1 \text{ mmol} \\
\text{Au(SMe}_2\text{)Cl (5.5 mol\%)} & \quad L (5.5 \text{ mol\%)} & \quad \text{AgNTf}_2 (5 \text{ mol\%)} & \quad \text{CH}_2\text{Cl}_2 \\
& \quad 50 \degree \text{C, 0.5 h, 1 h,} \\
\end{align*}
\]

\[R = \text{Ph, (S, R)_X-M1, -12\% ee, 77\% yield}\]
\[R = 3,5-\text{-diert-butyl-4-methoxyl, (S, R)_2-M2, -11\% ee, 76\% yield}\]
\[R = 1-\text{nap, (S, R)_3-M3, -32\% ee, 79\% yield}\]
\[R = \text{Me, (S, R)_3-M4, 9\% ee, 73\% yield}\]

\[\begin{array}{c|c|c}
\text{Entry} & \text{Silver salt} & \text{Ee (\%)}^b & \text{Yield (\%)}^c \\
\hline
1 & \text{AgNTf}_2 & 88 & 92 \\
2 & \text{AgC}_4\text{F}_7\text{O}_2 & 76 & 88 \\
3 & \text{AgBF}_4 & 90 & 90 \\
4 & \text{AgCH}_3\text{OS} & 78 & 84 \\
5 & \text{AgOTf} & 91 & 91 \\
6 & \text{AgSbF}_6 & 86 & 89 \\
\end{array}
\]

*The reactions were carried out in 1.5 mL CH\(_2\)Cl\(_2\). Yields of (-)-3a were NMR yields, and ee values were determined by chiral HPLC.

b. Screening of silver salt\(^a\).

\[
\begin{align*}
\text{Ph}_3 \text{C} & \quad + \quad \text{Ph}_3 \text{C} \\
1a & \quad 0.11 \text{ mmol} & 2 & \quad 0.1 \text{ mmol} \\
\text{Au(SMe}_2\text{)Cl (5.5 mol\%)} & \quad (S, R)_3-X (5.5 \text{ mol\%)} & \quad [\text{Ag}] (5 \text{ mol\%)} & \quad \text{CH}_2\text{Cl}_2, 50 \degree \text{C, 0.5 h,} \\
& \quad \text{(-)-3a} \\
\end{align*}
\]

The reactions were carried out in 1.5 mL CH\(_2\)Cl\(_2\). Yields of (-)-3a were NMR yields, and ee values were determined by chiral HPLC.
c. Further Optimization.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>solvent</th>
<th>T. (°C)</th>
<th>Ee (%)b</th>
<th>Yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>-50</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>DCE</td>
<td>-40</td>
<td>78</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>CHCl\textsubscript{3}</td>
<td>-50</td>
<td>87</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>-60</td>
<td>92</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>-70</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>-78</td>
<td>94</td>
<td>92</td>
</tr>
</tbody>
</table>

aThe reactions were carried out in 1.5 mL solvent. bDetermined by chiral HPLC. cNMR yield.

3. Synthesis of Ligands (S, R\textsubscript{s})-X1-X8

(1) Synthesis of 6.

To a solution of 15.1 g HP(1-Ad\textsubscript{2}) (50 mmol) in toluene (150 mL), 9 mL 2-(2-Brdmophenyl)-1,3-dioxolane (60 mmol, 1.2 equiv), 600 mg Pd(OAc)\textsubscript{2} (2.5 mmol, 5 mol%), 1.65 g dppf (3.0 mmol, 6 mol%) and 5.75 g NaOtBu (60 mmol, 1.0 equiv) was added. The reaction was stirred at 110 °C for 8 h, and then was cooled to ambient temperature. The solid was filtered off by celite and washed with CH\textsubscript{2}Cl\textsubscript{2}. The filtrate was concentrated in vacuo. The residue was purified by recrystallization and m1 was obtained in 80% yield: yellow solid. 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.78 (d, J = 7.6 Hz, 1H), 7.70-7.68 (m, 1H), 7.44-7.40 (m, 1H), 7.35-7.31 (m, 1H), 6.87 (d, J = 8.0 Hz, 1H), 4.18-4.03 (m, 4H), 2.01-1.98 (m, 6H), 1.89-1.86 (m, 12H), 1.66 (s, 12H). 31P NMR (162 MHz, CDCl\textsubscript{3}) δ 14.50. 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 145.1 (d, J\textsubscript{CP} = 22.0 Hz), 135.9 (d, J\textsubscript{CP} = 3.0 Hz), 133.8 (d, J\textsubscript{CP} = 28.0 Hz), 129.2, 127.1, 126.6 (d, J\textsubscript{CP} = 7.0 Hz),
101.3 (d, $J_{CP} = 38.0$ Hz), 65.5, 41.8 (d, $J_{CP} = 13.0$ Hz), 36.84 (d, $J_{CP} = 22.0$ Hz), 36.82, 28.7 (d, $J_{CP} = 7.0$ Hz). MS (70 eV): m/z (%): 376 (M$^+$, 2.07), 105 (100). HRMS calcd for C$_{25}$H$_{39}$N$_2$O$_2$P: 376.1587, found: 376.1585.

To a solution of 4.5 g m1 (10 mmol) in 90 mL THF, 20 mL H$_2$O and 3 mL H$_2$SO$_4$ was added. The reaction mixture was heated at 60 °C for 3 h, and then was cooled to room temperature. The reaction was quenched by saturated NaHCO$_3$ solution and extracted with EtOAc for 2 times. The combined organic layer was dried over Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by flash chromatography (hexane : EtOAc = 20:1) to get 6 as yellow solid (89% yield). 1H NMR (400 MHz, CDCl$_3$) δ 11.24 (d, $J = 8.8$ Hz, 1H), 7.98-7.95 (m, 1H), 7.90-7.88 (m, 1H), 7.57-7.52 (m, 1H), 7.51-7.47 (m, 1H), 1.98-1.87 (m, 18H), 1.67 (s, 12H). 31P NMR (162 MHz, CDCl$_3$) δ 8.92. 13C NMR (100 MHz, CDCl$_3$) δ 194.6 (d, $J_{CP} = 41.0$ Hz), 143.6 (d, $J_{CP} = 17.0$ Hz), 138.4 (d, $J_{CP} = 35.0$ Hz), 136.8 (d, $J_{CP} = 2.0$ Hz), 131.4, 129.1-129.0 (m), 127.5 (d, $J_{CP} = 6.0$ Hz), 41.9 (d, $J_{CP} = 12.0$ Hz), 37.0 (d, $J_{CP} = 22.0$ Hz), 36.8, 28.7 (d, $J_{CP} = 8.0$ Hz). MS (70 eV): m/z (%): 406 (M$^+$, 40.68), 135 (100). HRMS calcd for C$_{27}$H$_{35}$OP: 406.2426, found: 406.2423.

(2) Synthesis of (R_s)-8.

The sulfinyl imine (R_s)-8 was prepared according to the modified procedure of literature.[1] To a solution of 2.03 g o-phosphino aldehyde 6 (5 mmol) in 20 mL THF was added 909 mg (R)-(+-)-2-methyl-2-propanesulfinamide 7 (7.5 mmol, 1.5 equiv) and 3.1 mL Ti(OEt)$_4$ (15 mmol, 3.0 equiv). The reaction was heated at 50 °C for 10 h. When completed, the reaction mixture was quenched by saturated NaHCO$_3$ solution, filtered by celite, and washed with ethyl acetate for twice. The filtrate was extracted with EtOAc, dried over Na$_2$SO$_4$, and concentrated in vacuo. Further purification was
accomplished by flash chromatography (hexane : EtOAc = 10:1) to isolate \((R)_S-8\) as yellow solid (85% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.87 (d, \(J = 7.6\) Hz, 1H), 8.09-8.06 (m, 1H), 7.87-7.85 (m, 1H), 7.46-7.44 (m, 2H), 1.93-1.87 (m, 18H), 1.70-1.60 (m, 12H), 1.27 (s, 9H). \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta\) 12.56. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 164.5 (d, \(J_{CP} = 38.0\) Hz), 142.1 (d, \(J_{CP} = 22.0\) Hz), 137.7 (d, \(J_{CP} = 33.0\) Hz), 136.7 (d, \(J_{CP} = 2.0\) Hz), 129.6, 128.9, 128.0 (d, \(J_{CP} = 6.0\) Hz), 57.8, 41.8 (d, \(J_{CP} = 4.0\) Hz), 41.6 (d, \(J_{CP} = 4.0\) Hz), 37.2-37.1 (m), 36.9 (d, \(J_{CP} = 2.0\) Hz), 36.8, 28.7 (d, \(J_{CP} = 9.0\) Hz), 22.7. HRMS(ESI) calcd for C\(_{31}\)H\(_{45}\)NOPS [M+H\(^+\)]: 510.2954, found: 510.3013. \([\alpha]_D^{20} = -155.1\ (c = 0.3, \text{CHCl}_3)\).

3) Synthesis of \((S, R)_S-X1-X8\).

General procedure: To a solution of 510 mg \((R)_S-8\) (1.0 mmol) in 10 mL CH\(_2\)Cl\(_2\) at -55 °C was added Grignard reagent (15 mmol, 3.0 equiv) in THF. The mixture was stirred at -55 °C for 4-6 h and then was warmed to room temperature with stirring overnight. When completed, the reaction mixture was quenched by the addition of saturated NH\(_4\)Cl solution and diluted with ethyl acetate. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na\(_2\)SO\(_4\), filtered, concentrated, and purified by flash chromatography (hexane : CH\(_2\)Cl\(_2\) : EtOAc = 6:2:1) to isolated \((S, R)_S-X1-X8\) as yellow solid.

1) Synthesis of \((S,R)_S-X1

\[
\text{Ph} \quad \begin{array}{c}
\text{N} \\
\text{O} \\
\text{S} \\
\text{PAd}_2 \\
(S,R)_S-X1
\end{array}
\]
Yellow solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.76-7.73 (m, 2H), 7.46-7.40 (m, 3H), 7.38-7.23 (m, 3H), 7.17 (t, \(J = 7.2\) Hz, 1H), 7.07-7.03 (m, 1H), 3.65 (d, \(J = 3.2\) Hz, 1H), 2.06-2.00 (m, 3H), 1.95-1.83 (m, 6H), 1.70-1.48 (m, 21H), 1.22 (s, 9H). \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta\) 14.47. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 149.5 (d, \(J_{CP} = 24.0\) Hz), 142.8, 136.7 (d, \(J_{CP} = 2.0\) Hz), 133.6 (d, \(J_{CP} = 29.0\) Hz), 129.3 (d, \(J_{CP} = 2.0\) Hz), 128.7, 128.2, 127.9 (d, \(J_{CP} = 6.0\) Hz), 127.2, 125.4, 59.6 (d, \(J_{CP} = 34.0\) Hz), 55.8, 41.8 (d, \(J_{CP} = 13.0\) Hz), 41.4 (d, \(J_{CP} = 13.0\) Hz), 37.4 (d, \(J_{CP} = 23.0\) Hz), 36.8 (d, \(J_{CP} = 15.0\) Hz), 36.5, 28.7 (d, \(J_{CP} = 9.0\) Hz), 22.7. HRMS(ESI) calcd for C\(_{37}\)H\(_{50}\)NOPS [M+H\(^+\)]: 588.3423, found: 588.3497.

\([\alpha]_D^{20} = -34.2\) (c = 0.3, CHCl\(_3\)).

(2) Synthesis of (S,R\(_3\))-X2

\[
\begin{align*}
\text{Me} & \quad \text{O} \\
\text{N} & \quad \text{S} \quad \text{PAd}_2 \\
\text{(S,R\(_3\))-X2} & \\
\item Yellow solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.73 (d, \(J = 7.8\) Hz, 1H), 7.47-7.43 (m, 1H), 7.37 (t, \(J = 7.8\) Hz, 1H), 7.23-7.20 (m, 1H), 6.00-5.91 (m, 1H), 3.36 (d, \(J = 5.2\) Hz, 1H), 2.04-1.84 (m, 18H), 1.68-1.66 (m, 12H), 1.51 (d, \(J = 6.8\) Hz, 3H), 1.16 (s, 9H). \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta\) 14.87. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 152.4 (d, \(J = 25.0\) Hz), 136.2, 132.1 (d, \(J = 26.0\) Hz), 129.2, 126.4 (d, \(J = 5.0\) Hz), 125.1, 55.5, 52.5 (d, \(J = 35.0\) Hz), 42.0 (d, \(J = 13.0\) Hz), 41.7 (d, \(J = 12.0\) Hz), 37.2 (d, \(J = 22.4\) Hz), 36.9 (d, \(J = 4.0\) Hz), 36.6, 28.8 (d, \(J = 4.0\) Hz), 28.7 (d, \(J = 4.0\) Hz), 25.7, 22.6. HRMS(ESI) calcd for C\(_{32}\)H\(_{48}\)NOPS [M+H\(^+\)]: 526.3267, found: 526.3272.
\([\alpha]_D^{20} = -80.3\) (c = 0.3, CHCl\(_3\)).

(3) Synthesis of (S,R\(_3\))-X3

\[
\begin{align*}
\text{Et} & \quad \text{O} \\
\text{N} & \quad \text{S} \quad \text{PAd}_2 \\
\text{(S,R\(_3\))-X3} & \\
\item Yellow solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.73 (d, \(J = 8.0\) Hz, 1H), 7.40-7.33 (m, 2H), 7.22-7.18 (m, 1H), 5.76 (s, 1H), 3.45 (s, 1H), 2.00-1.80 (m, 20H), 1.67 (d, \(J = 13.2\) Hz, 12H), 1.14 (s, 9H), 0.93 (t, \(J = 7.2\) Hz, 3H). \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) \(\delta\) 15.13. \(^{13}\)C
NMR (100 MHz, CDCl₃) δ 151.7 (d, Jₘᵣₖ = 25.0 Hz), 136.4 (m), 132.4 (d, Jₘᵣₖ = 27.0 Hz), 128.9, 126.8 (m), 124.9, 55.6, 42.2 (d, Jₘᵣₖ = 13.0 Hz), 41.6 (d, Jₘᵣₖ = 12.0 Hz), 41.2, 37.3 (d, Jₘᵣₖ = 23.0 Hz), 36.9, 36.9 (d, Jₘᵣ₆ = 24.0 Hz), 28.8, (d, Jₘᵣ₆ = 9.0 Hz), 28.7 (d, Jₘᵣ₆ = 9.0 Hz), 22.6, 19.5, 14.2. HRMS(ESI) calcd for C₃₄H₅₀NOPS [M+H⁺]: 540.3423, found: 540.3439. [α]₀²⁰ = -79.2 (c = 0.3, CHCl₃).

(4) Synthesis of (S,R₃)-X⁴

Yellow solid. \(^1^H\) NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 1H), 7.39-7.33 (m, 2H), 7.23-7.18 (m, 1H), 5.74-5.67 (m, 1H), 3.3 (d, J = 5.2 Hz, 1H), 2.01-1.82 (m, 22H), 1.61 (d, J = 12.4 Hz, 12H), 1.14 (s, 9H), 0.96-0.93 (t, J = 7.6 Hz, 3H). \(^{31}\)P NMR (162 MHz, CDCl₃) δ 15.27. \(^{13}\)C NMR (100 MHz, CDCl₃) δ 151.2 (d, Jₘᵣ₆ = 25.0 Hz), 136.3 (d, Jₘᵣ₆ = 2.0 Hz), 132.6 (d, Jₘᵣ₆ = 26.0 Hz), 128.9, 126.8 (d, Jₘᵣ₆ = 6.0 Hz), 124.9, 58.1 (d, Jₘᵣ₆ = 32.0 Hz), 55.6, 42.2 (d, Jₘᵣ₆ = 13.0 Hz), 41.7 (d, Jₘᵣ₆ = 12.0 Hz), 37.3 (d, Jₘᵣ₆ = 13.0 Hz), 36.93 (d, Jₘᵣ₆ = 24.0 Hz), 36.90, 31.8, 28.84 (d, Jₘᵣ₆ = 8.0 Hz), 28.76 (d, Jₘᵣ₆ = 9.0 Hz), 22.6, 10.8. HRMS(ESI) calcd for C₃₄H₅₂NOPS [M+H⁺]: 554.3589, found: 554.3580. [α]₀²⁰ = -41.4 (c = 0.3, CHCl₃).

(5) Synthesis of (S,R₃)-X⁵

Yellow solid. \(^1^H\) NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 1H), 7.40-7.33 (m, 2H), 7.23-7.18 (m, 1H), 5.75 (s, 1H), 3.43 (s, 1H), 2.02-1.82 (m, 22H), 1.77 (s, 1H), 1.69-1.64 (m, 12H), 1.44-1.40 (m, 1H), 1.14 (s, 9H), 0.87 (t, J = 6.8 Hz, 3H). \(^{31}\)P NMR (162 MHz, CDCl₃) δ 15.19. \(^{13}\)C NMR (100 MHz, CDCl₃) δ 151.7 (d, J = 25.0 Hz), 136.4, 132.4 (d, J = 26.0 Hz), 128.9, 126.7, 124.9, 55.6, 42.2 (d, J = 13.0 Hz), 41.6 (d, J = 12.0 Hz), 38.8, 37.3 (d, J = 23.0 Hz), 36.90, 36.87 (d, J = 24.0 Hz), 28.8 (d, J = 9.0 Hz), 28.7
(d, J = 9.0 Hz), 28.5, 22.6, 13.9. HRMS(ESI) calcd for C_{35}H_{54}NOPs [M+H^+]: 568.3736, found: 568.3738. \([\alpha]_D^{20} = -67.5 \ (c = 0.3, \text{CHCl}_3)\).

(6) Synthesis of (S,R,S)-X6

Yellow solid. \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.73 (d, \(J = 8.0\) Hz, 1H), 7.40-7.33 (m, 2H), 7.23-7.18 (m, 1H), 5.75 (s, 1H), 3.43 (s, 1H), 2.04-1.82 (m, 22H), 1.70-1.65 (m, 12H), 1.26-1.22 (m, 9H), 1.14 (s, 9H), 0.84 (t, \(J = 1.6\) Hz, 3H). \(^{31}P\) NMR (162 MHz, CDCl\(_3\)) \(\delta\) 15.19. \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 151.6 (d, \(J_{CP} = 25.0\) Hz), 136.3, 132.4 (d, \(J_{CP} = 27.0\) Hz), 128.9, 126.7, 124.9, 55.6, 42.2 (d, \(J_{CP} = 13.0\) Hz), 41.6 (d, \(J_{CP} = 12.0\) Hz), 39.1, 37.2 (d, \(J_{CP} = 23.0\) Hz), 36.9, 36.8 (d, \(J_{CP} = 24.0\) Hz), 31.6, 29.2, 28.8 (d, \(J_{CP} = 9.0\) Hz), 28.7 (d, \(J_{CP} = 9.0\) Hz), 26.2, 22.5 (d, \(J_{CP} = 5.0\) Hz), 14.0. HRMS(ESI) calcd for C_{37}H_{58}NOPs [M+H^+]: 596.4056, found: 596.4049. \([\alpha]_D^{20} = -76.6 \ (c = 0.3, \text{CHCl}_3)\).

(7) Synthesis of (S,R,R)-X7

Yellow solid. \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.72 (d, \(J = 7.8\) Hz, 1H), 7.40-7.32 (m, 2H), 7.22-7.17 (m, 1H), 5.72 (s, 1H), 3.41 (s, 1H), 2.01-1.79 (m, 22H), 1.65 (d, \(J = 10.8\) Hz, 12H), 1.58-1.49 (m, 1H), 1.13 (s, 9H), 0.84 (t, \(J = 6.4\) Hz, 6H). \(^{31}P\) NMR (162 MHz, CDCl\(_3\)) \(\delta\) 15.18. \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 151.7 (d, \(J_{CP} = 25.0\) Hz), 136.3, 132.4 (d, \(J_{CP} = 27.0\) Hz), 128.9, 126.7 (d, \(J_{CP} = 6.0\) Hz), 124.8, 55.5, 42.2 (d, \(J_{CP} = 13.0\) Hz), 41.6 (d, \(J_{CP} = 12.0\) Hz), 37.2 (d, \(J_{CP} = 23.0\) Hz), 36.87, 36.85 (d, \(J_{CP} = 24.0\) Hz), 35.4, 28.81 (d, \(J_{CP} = 9.0\) Hz), 28.7 (d, \(J_{CP} = 9.0\) Hz), 27.9, 22.6, 22.5, 22.4. HRMS(ESI) calcd for C_{37}H_{56}NOPs [M+H^+]: 582.3893, found: 582.3902. \([\alpha]_D^{20} = -87.1 \ (c = 0.3, \text{CHCl}_3)\).

s 9
(8) Synthesis of (S,R_S)-X8

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.6 Hz, 1H), 7.41-7.33 (m, 2H), 7.23-7.18 (m, 1H), 5.73 (s, 1H), 3.38 (s, 1H), 2.01-1.81 (m, 20H), 1.65 (d, J = 7.8 Hz, 12H), 1.14 (s, 9H), 0.92 (s, 2H), 0.83 (s, 9H). ³¹P NMR (162 MHz, CDCl₃) δ 15.27. ¹³C NMR (100 MHz, CDCl₃) δ 151.8 (d, J_{CP} = 24.7 Hz), 136.3, 132.5 (d, J_{CP} = 26.5 Hz), 128.9, 126.6 (d, J_{CP} = 5.8 Hz), 124.9, 60.0, 55.5, 46.5, 42.3 (d, J_{CP} = 12.7 Hz), 41.6 (d, J_{CP} = 12.0 Hz), 40.6, 37.3 (d, J_{CP} = 22.7 Hz), 36.89, 36.88 (d, J_{CP} = 24.1 Hz), 34.4, 30.2, 29.7, 29.2, 28.8 (d, J_{CP} = 9.0 Hz), 28.7 (d, J_{CP} = 9.0 Hz), 22.6. HRMS(ESI) calcd for C₃₇H₅₈NOPS [M+H⁺]: 596.4049, found: 596.4066. [α]_D = -84.0 (c = 0.3, CHCl₃).

4. Synthesis of substrates 1a-1t and 2.

All 3-vinylindole substrates were synthesized according to our previous procedure.² The spectra of known compounds such as 1a, 1b and 2 are consistent with the literature, which are not included here except 1a as a typical procedure.

Typical Procedure for synthesis of 3-styrylindoles.

n-BuLi (2.5 M in hexane solution) (9.6 mL, 24 mmol) was slowly added to the suspension of RCH₂PPh₃Br (10.39 g, 24 mmol) in dry THF (130 mL) at -20 °C. The mixture was stirred at room temperature for 2 hours followed by the addition of S1 (3.18 g, 20 mmol) in THF (20 mL) at -20 °C. Then the mixture was stirred at room
temperature for 2 hours, monitored by TLC and quenched by saturated solution of NH₄Cl at room temperature. The extracts with ethyl acetate were washed by Saturated salt water and dried over anhydrous Na₂SO₄, then the solvent was removed under reduced pressure. The crude product was purified by column chromatography to give (E)-Product (2.70 g, 58%) as a white solid and (Z)-product (1.86 g, 40%) as a colorless liquid.

(1) Synthesis of 1d

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.6Hz, 1H), 7.46-7.43 (m, 2H), 7.38-7.36 (m, 2H), 7.32-7.16 (m, 5H), 7.09-7.05 (m, 1H), 3.73 (s, 3H), 1.35-1.31 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 137.6, 135.9, 128.2, 125.5, 125.4, 124.6, 122.1, 120.8, 120.2, 120.0, 114.1, 109.5, 34.5, 32.8, 31.3. MS (70 eV): m/z (%): 289 (M⁺, 100). HRMS calcd for C₂₁H₂₃N: 289.1830, found: 289.1833.

(2) Synthesis of 1e

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 1H), 7.31-7.19 (m, 5H), 7.16 (s, 1H), 7.12-7.02 (m, 3H), 3.82 (s, 3H), 6.78-6.73 (m, 1H), 3.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 140.2, 137.7, 129.5, 128.6, 126.1, 124.5, 122.2, 121.9, 120.2, 120.0, 118.4, 113.8, 112.1, 110.9, 109.5, 55.2, 32.8. MS (70 eV): m/z (%): 263
(M⁺, 100). HRMS calcd for C₁₉H₁₇NO: 263.1312, found: 263.1312.

(3) Synthesis of 1f

![Chemical structure of 1f]

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 1H), 7.33-7.17 (m, 5H), 7.14 (s, 2H), 7.03 (d, J = 16.4 Hz, 1H), 6.85 (s, 1H), 3.75 (s, 3H), 2.34 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 138.0, 137.7, 128.3, 128.2, 126.2, 125.0, 123.6, 122.2, 121.2, 120.3, 119.9, 114.1, 109.5, 32.8, 21.3. MS (70 eV): m/z (%): 261 (M⁺, 100). HRMS calcd for C₁₉H₁₉N: 261.1517, found: 261.1518.

(4) Synthesis of 1i

![Chemical structure of 1i]

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 1H), 7.47-7.40 (m, 2H), 7.34-7.24 (m, 2H), 7.23-7.15 (m, 3H), 7.06-6.98 (m, 3H), 3.75 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.10. ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 160.5, 137.7, 134.8 (d, J = 3.0 Hz), 128.4, 127.0 (d, J = 7.7 Hz), 126.1, 123.6, 122.3, 121.4 (d, J = 2.0 Hz), 120.1 (d, J = 9.3 Hz), 115.4 (d, J = 21.0 Hz), 113.8, 109.6, 32.8. MS (70 eV): m/z (%): 251 (M⁺, 100). HRMS calcd for C₁₇H₁₄NF: 251.1110, found: 251.1112.

(5) Synthesis of 1k
White solid. 1H NMR (400 MHz, CDCl$_3$) δ 8.28 (d, $J = 8.4$ Hz, 1H), 8.08-8.04 (m, 1H), 7.88-7.81 (m, 2H), 7.77-7.71 (m, 2H), 7.56-7.44 (m, 3H), 7.34-7.23 (m, 4H), 7.19 (s, 1H), 3.71 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 137.7, 136.2, 133.8, 131.2, 128.8, 128.5, 126.9, 125.8, 125.6, 124.5, 123.9, 122.6, 121.6, 120.3, 120.2, 114.4, 109.6, 32.8. MS (70 eV): m/z (%): 283 (M$^+$, 100). HRMS calcd for C$_{21}$H$_{17}$N: 283.1361, found: 283.1364.

(6) Synthesis of 1m

Yellow solid. 1H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, $J = 16.4$ Hz, 1H), 7.41 (d, $J = 8.4$ Hz, 2H), 7.33-7.28 (m, 4H), 7.18 (d, $J = 8.0$ Hz, 1H), 7.04-6.97 (m, 1H), 6.65 (d, $J = 16.4$ Hz, 1H), 3.69 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 138.1, 137.2, 131.5, 127.3, 126.8, 124.8, 124.4, 123.6, 122.5, 122.0, 120.0, 114.8, 114.3, 108.9, 33.1.

(7) Synthesis of 1o

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.84 (d, $J = 8.0$ Hz, 1H), 7.47 (d, $J = 7.6$ Hz, 2H), 7.34-7.28 (m, 2H), 7.24-7.13 (m, 2H), 7.08-7.01 (m, 4H), 3.65 (s, 3H), 2.48 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 138.7, 138.1, 132.0, 128.5, 128.1, 126.3, 125.6, 124.4,
123.9, 121.8, 121.7, 119.9, 113.8, 109.5, 32.7, 21.8. MS (70 eV): m/z (%): 247(M⁺, 100). HRMS calcd for C_{18}H_{17}N: 247.1361, found: 247.1362.

(8) Synthesis of 1p

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.6 Hz, 2H), 7.33-7.27 (m, 2H), 7.23-7.14 (m, 2H), 7.08 (s, 1H), 7.06-6.94 (m, 2H), 6.92 (d, J = 7.2 Hz, 1H), 4.00 (s, 3H), 2.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 136.3, 129.7, 128.6, 127.4, 126.4, 125.7, 124.9, 121.5, 121.3, 120.2, 118.1, 113.6, 37.0, 19.7. MS (70 eV): m/z (%): 247 (M⁺, 100). HRMS calcd for C_{18}H_{17}N: 247.1361, found: 247.1363.

(9) Synthesis of 1r

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.96 (m, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.34-7.18 (m, 10H), 7.06 (d, J = 16.4 Hz, 1H), 6.89 (d, J = 8.4 Hz, 2H), 5.30 (s, 2H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 137.2, 137.1, 131.4, 128.8, 127.7, 127.2, 126.84, 126.81, 126.4, 124.9, 122.3, 120.3, 120.1, 119.4, 114.8, 114.1, 110.0, 55.3, 50.1. MS (70 eV): m/z (%): 339 (M⁺, 100). HRMS calcd for C_{24}H_{21}NO: 339.1623, found: 339.1621.

(10) Synthesis of 1s
Yellow solid. 1H NMR (400 MHz, CDCl$_3$) δ 8.02-7.98 (m, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.28-7.17 (m, 8H), 7.13-7.05 (m, 3H), 5.20 (s, 2H), 1.33 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 149.5, 137.2, 137.0, 135.8, 128.8, 127.7, 127.5, 126.8, 126.4, 125.5, 125.4, 125.0, 122.3, 120.7, 120.3, 120.2, 114.7, 110.0, 50.0, 34.5, 31.3. MS (70 eV): m/z (%): 365 (M$^+$, 100). HRMS calcd for C$_{27}$H$_{27}$N: 365.2144, found: 365.2146.

(11) Synthesis of 1t

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 8.02-7.94 (m, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.34-7.20 (m, 10H), 7.16-7.10 (m, 2H), 7.03 (d, J = 16.8 Hz, 1H), 5.29 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 137.3, 137.1, 136.9, 131.9, 128.8, 128.7, 128.0, 127.8, 126.9, 126.8, 126.3, 123.8, 122.5, 122.1, 120.4, 120.3, 114.3, 110.1, 50.1. MS (70 eV): m/z (%): 343 (M$^+$, 100). HRMS calcd for C$_{23}$H$_{18}$NCl: 343.1128, found: 343.1125.

(12) Synthesis of 1w

Yellow liquid. (mixture, E: Z = 1.56: 1) 1H NMR (400 MHz, CDCl$_3$) δ [7.82 (d, J = 8.2 Hz, 0.3H), 7.62-7.56 (m, 2H), 7.50-7.44 (m, 2H), 7.28-7.23 (m, 4H), 7.14-7.05 (m, 2H), 5.29 (s, 2H), 1.33 (s, 9H). MS (70 eV): m/z (%): 343 (M$^+$, 100). HRMS calcd for C$_{23}$H$_{18}$NCl: 343.1128, found: 343.1125.
0.39H), 7.66 (d, J = 8.2 Hz, 0.61H)], [7.34-7.11 (m, 3H)], [7.12 (s, 0.61H),7.00 (s, 0.39H)], [6.66-6.61 (m, 0.61H), 6.57-6.53 (m, 0.39H)], [6.24-6.10 (m, 0.39H), 5.77-5.66 (m, 0.61H)], [3.78 (s, 1.83H), 3.72 (s, 1.17H)], [1.96-1.87 (m, 3H)]. 13C NMR (100 MHz, CDCl$_3$) δ [137.4, 136.2], [127.9, 127.4], [126.6, 126.2], [123.2, 122.6], [122.0, 121.9], [121.8, 120.5], [120.0, 119.3], [119.5, 119.1], [114.1, 112.4], [109.3, 109.1], [32.8, 32.6], [18.9, 15.6]. MS (70 eV): m/z (%): 171 (M$^+$, 100). HRMS calcd for C$_{12}$H$_{13}$N: 171.1048, found: 171.1045.

5. General procedure for the [2+2] cycloaddition and copies of HPLC data

![Chemical Reaction](image)

The solution of (S,R)-X8 (0.012 mmol, 6 mol %) and Au(SMe$_2$)Cl (0.01 mmol, 5 mol%) in 1 mL CH$_2$Cl$_2$ was stirred at rt for 2 hours, and then remove the solvent. After completion, the gold complex and AgOTf (0.01 mmole, 5 mol %) in CH$_2$Cl$_2$ (1 mL) was stirred at rt for 15 min. Then the above catalyst solution then was added to the solution of 1a (0.22 mmol, 1.1 equiv) and 2 (0.2 mmol) in DCM (3 mL) at -78°C. The reaction was determined by TLC, after the less component was consumed, the solution was removed under reduced pressure. The diastereomeric ratio was determined by crude 1H NMR, the resulting crude mixture was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) as the solvent to afford product. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC using a Chiralpak such as AD-H, AS-H, OD-H, etc.

(1) Synthesis of 3a
White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.49 (d, $J = 8.0$ Hz, 1H), 7.39-7.29 (m, 5H), 7.28-7.21 (m, 2H), 7.10-7.03 (m, 1H), 6.98 (s, 1H), 6.54 (d, $J = 2.0$ Hz, 1H). 4.48-4.43 (m, 1H), 4.07-4.00 (m, 1H), 3.88 (dd, $J = 16.8$, 8.8 Hz 1H), 3.78 (s, 3H), 3.55-3.30 (m, 4H), 3.00-2.94 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 156.3, 144.8, 137.5, 128.5, 126.5, 126.4, 126.0, 123.2, 121.9, 119.5, 119.1, 117.6, 117.0, 109.4, 62.1, 47.6, 46.4, 44.2, 33.6, 32.8. MS (70 eV): m/z (%): 358 (M$^+$, 72.16), 271 (100). HRMS calcd for C$_{23}$H$_{22}$N$_2$O$_2$: 356.1681, found: 358.1685. $[\alpha]_D^{20} = -11.1$ (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 95: 5, 0.8 mL/min, 233 nm; t_r (minor) = 29.37 min, t_r (major) = 33.50 min, 95% ee.

<table>
<thead>
<tr>
<th>Chromatogram</th>
<th>U-VP 21 N/2/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20.007</td>
<td>-32.089</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integration Results</th>
<th>Retention Time</th>
<th>Area mAU/min</th>
<th>Height mAU</th>
<th>Relative Area %</th>
<th>Relative Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>1</td>
<td>20.067</td>
<td>200.277</td>
<td>245.192</td>
<td>5944</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>32.983</td>
<td>201.699</td>
<td>222.457</td>
<td>49.56</td>
</tr>
<tr>
<td>Total</td>
<td>405.959</td>
<td>468.059</td>
<td>100.00</td>
<td>160.69</td>
<td></td>
</tr>
</tbody>
</table>

S 17
(2) Synthesis of 3b

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.49 (d, $J = 7.6$ Hz, 1H), 7.31 (d, $J = 8.4$ Hz, 1H), 7.28-7.20 (m, 3H), 7.14 (d, $J = 8.0$ Hz, 2H), 7.09-7.04 (m, 1H), 6.96 (s, 1H), 6.54-6.52 (d, $J = 2.4$ Hz, 1H), 4.42-4.38 (m, 1H), 4.06-3.98 (m, 1H), 3.91-3.86 (m, 1H), 3.76 (s, 3H), 3.54-3.26 (m, 4H), 2.96-2.90 (m, 1H), 2.35 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 156.3, 141.8, 137.5, 135.9, 129.2, 126.4, 126.3, 126.0, 123.3, 121.9, 119.5, 119.1, 117.5, 117.1, 109.3, 62.1, 47.7, 46.0, 44.2, 33.7, 32.7, 21.0. MS (70 eV): m/z (%): 372 (M$^+$, 100). HRMS calcd for C$_{24}$H$_{24}$N$_2$O$_2$: 372.1838, found: 372.1837. [α]$_D^{20}$ = 26.9 (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 95: 5, 1.0 mL/min, 233 nm; tr (minor) = 24.47 min, tr (major) = 26.97 min, 92% ee.
(3) Synthesis of 3c

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.47 (d, $J = 8.0$ Hz, 1H), 7.32 (d, $J = 8.4$ Hz,
1H), 7.27-7.23 (m, 3H), 7.07 (t, J = 7.6 Hz, 1H), 6.96 (s, 1H), 6.88 (d, J = 8.4 Hz, 2H), 6.53 (s, 1H), 4.40-4.37 (m, 1H), 4.04 (dd, J = 14.8, 8.8 Hz, 1H), 3.90 (dd, J = 16.8, 8.4 Hz, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 3.54-3.26 (m, 4H), 2.95-2.87 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 158.3, 156.3, 137.4, 137.0, 127.5, 126.3, 125.9, 123.2, 121.9, 119.5, 119.1, 117.5, 117.1, 113.9, 109.3, 62.1, 55.3, 47.9, 45.8, 44.2, 33.8, 32.8. MS (70 eV): m/z (%): 388 (M$^+$, 26.8), 263 (100). [α]$_D^{20}$ = 7.9 (c = 0.3, CHCl$_3$). HRMS calcld for C$_{24}$H$_{24}$N$_2$O$_3$: 388.1787, found: 388.1789. HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 95: 5, 0.5 mL/min, 233 nm; tr (minor) = 85.30 min, tr (major) = 91.95 min, 93% ee.
(4) Synthesis of 3d

White solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.53 (d, \(J = 8.0\) Hz, 1H), 7.41-7.22 (m, 6H), 7.11-7.06 (m, 1H), 6.97 (s, 1H), 6.52 (d, \(J = 2.4\) Hz, 1H), 4.45-4.41 (m, 1H), 4.07-4.00 (m, 1H), 3.89 (dd, \(J = 16.8, 8.8\) Hz 1H), 3.77 (s, 3H), 3.56-3.30 (m, 4H), 2.98-2.93 (m, 1H), 1.33 (s, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 156.3, 149.2, 141.8, 137.5, 126.3, 126.1, 126.0, 125.4, 123.4, 121.9, 119.5, 119.1, 117.5, 117.2, 109.3, 62.1, 47.5, 45.8, 44.2, 34.4, 33.6, 32.8, 31.4. MS (70 eV): m/z (%): 414 (M+, 35.0), 44 (100). HRMS calcd for C\(_{27}\)H\(_{30}\)N\(_2\)O\(_2\): 414.2307, found: 414.2309. \([\alpha]_D^{20}\) = 32.9 (c = 0.3, CHCl\(_3\)). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 90: 10, 0.8 mL/min, 210 nm; tr (minor) = 14.67 min, tr (major) = 17.9 min, 92% ee.
(5) Synthesis of 3e

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.49 (d, $J = 8.0$ Hz, 1H), 7.31-7.29 (m, 1H), 7.27-7.18 (m, 2H), 7.10-7.04 (m, 1H), 6.96 (s, 1H), 6.91 (d, $J = 7.6$ Hz, 1H), 6.87 (s, 1H), 6.80-6.76 (m, 1H), 6.52 (d, $J = 2.0$ Hz, 1H), 4.46-4.42 (m, 1H), 4.05-3.98 (m, 1H), 3.86 (dd, $J = 16.8$, 8.8 Hz, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.54-3.27 (m, 4H), 3.02-2.91 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 159.8, 156.3, 146.5, 137.5, 129.5, 126.3, 126.0, 123.0, 122.0, 119.5, 119.1, 118.9, 117.6, 117.0, 112.4, 111.6, 109.4, 62.1, 55.2, 47.5, 46.4, 44.2, 33.5, 32.8. MS (70 eV): m/z (%): 388 (M$^+$, 44.58), 301 (100). HRMS calcd for C$_{24}$H$_{24}$N$_2$O$_3$: 388.1787, found: 388.1784. $[\alpha]_D^{20} = 6.9$ (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 95: 5, 0.8 mL/min, 233 nm; tr (minor) = 43.56 min, tr (major) = 52.79 min, 91% ee.
(6) Synthesis of 3f
White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.52 (d, $J = 8.0$ Hz, 1H), 7.32 (d, $J = 8.0$ Hz, 1H), 7.28-7.22 (m, 1H), 7.11-7.03 (m, 1H), 6.99-6.93 (m, 3H), 6.88 (s, 1H), 6.52 (d, $J = 2.0$, 1H), 4.45-4.42 (m, 1H), 4.05-3.99 (m, 1H), 3.87 (dd, $J = 16.4$, 8.8 Hz, 1H), 3.77 (s, 3H), 3.53-3.26 (m, 4H), 3.01-2.92 (m, 1H), 2.32 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 156.3, 144.7, 137.9, 137.5, 128.0, 126.3, 126.0, 124.3, 123.5, 121.9, 119.6, 119.0, 117.5, 117.1, 109.3, 62.0, 47.5, 46.3, 44.2, 33.6, 32.7, 21.3. MS (70 eV): m/z (%): 386 (M$^+$, 99.68), 44 (100). HRMS calcd for C$_{25}$H$_{26}$N$_2$O$_2$: 386.1994, found: 386.1996. [α]$^2_{D}$ = 8.1 (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 70: 30, 0.8 mL/min, 210 nm); tr (major) = 8.83 min, tr (minor) = 9.83 min, 95% ee.
(7) Synthesis of 3g

Yellow solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.47-7.43 (m, 3H), 7.32 (d, $J = 8.4$ Hz, 1H), 7.28-7.23 (m, 2H), 7.19 (d, $J = 8.4$ Hz, 2H), 7.11-7.04 (m, 1H), 6.96 (s, 1H), 6.53 (dd, $J = 4.4$, 2.4 Hz, 1H), 4.40-4.36 (m, 1H), 4.06-3.99 (m, 1H), 3.89 (dd, $J = 16.8$, 9.2 Hz, 1H), 3.78 (s, 3H), 3.53-3.30 (m, 4H), 2.96-2.88 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 156.3, 143.8, 137.4, 131.6, 128.3, 126.2, 126.0, 122.4, 122.0, 119.3, 119.2, 117.8, 116.7, 109.4, 62.1, 47.7, 45.9, 44.2, 33.5, 32.8. MS (70 eV): m/z (%): 436 (M$^+$, 100), 438 ([M+2]$^+$, 99.16). HRMS calcd for C$_{23}$H$_{21}$N$_2$O$_2$Br: 436.0786, found: 436.0787. [α]$_D^{20} = 57.9$ (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 95: 5, 0.4 mL/min, 233 nm; tr (major) = 93.10 min, tr (minor) = 97.37 min, 89% ee.
(8) Synthesis of 3h

Yellow solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.49-7.41 (m, 3H), 7.32 (d, \(J = 8.4\) Hz, 1H), 7.28-7.15 (m, 3H), 7.11-7.05 (m, 1H), 6.96 (s, 1H), 6.53 (d, \(J = 2.0\) Hz, 1H), 4.42-4.37 (m, 1H), 4.06-3.99 (m, 1H), 3.86 (dd, \(J = 16.4, 8.4\) Hz, 1H), 3.77 (s, 3H), 3.53-3.27 (m, 4H), 2.96-2.88 (m, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 156.2, 143.8, 137.5, 131.6, 128.2, 126.2, 126.0, 122.5, 122.0, 120.0, 119.3, 119.2, 117.8, 116.7, 109.4, 62.1, 47.7, 45.9, 44.2, 33.5, 32.8. MS (70 eV): m/z (%): 392 (M\(^+\), 99.52), 394 ([M+2]\(^+\), 35.32), 305 (100).

HRMS calcd for C\(_{23}\)H\(_{21}\)N\(_2\)O\(_2\)Cl: 392.1295, found: 392.1292. \([\alpha]_{D}^{20} = 21.9\) (c = 0.3, CHCl\(_3\)). HPLC conditions: Chiralpak OD-H, hexane/2-propanol = 95: 5, 0.8 mL/min, 210 nm; tr (major) = 10.96 min, tr (minor) = 13.74 min, 91% ee.
(9) Synthesis of 3i

Yellow solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.45 (d, $J = 8.0$ Hz, 1H), 7.35-7.22 (m, 4H), 7.11-6.95 (m, 4H), 6.53 (dd, $J = 4.4$, 2.4 Hz, 1H), 4.40-4.36 (m, 1H), 4.06-3.98 (m, 1H),
3.94-3.85 (m, 1H), 3.78 (s, 3H), 3.55-3.31 (m, 4H), 2.95-2.87 (m, 1H). 19F NMR (377 MHz, CDCl$_3$) δ -116.71. 13C NMR (100 MHz, CDCl$_3$) δ 162.7, 160.3, 156.3, 140.5 (d, $J = 3.0$ Hz), 137.5, 127.9 (d, $J = 8$ Hz), 126.3, 126.0, 122.9, 122.0, 119.3 (d, $J = 15.0$ Hz), 117.7, 116.8, 115.3 (d, $J = 21.0$ Hz), 109.4, 62.1, 47.9, 45.8, 44.2, 33.8, 32.8. MS (70 eV): m/z (%): 376 (M$^+$, 2.07), 105 (100). HRMS calcd for C$_{23}$H$_{21}$N$_2$O$_2$F: 376.1587, found: 376.1585. [α]$_D^{20}$ = -10.3 (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 70: 30, 0.8 mL/min, 233 nm); tr (major) = 9.76 min, tr (minor) = 13.49 min, 94% ee.

Integration Results

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Retention Time (min)</th>
<th>Area (nl*µL/µg)</th>
<th>Height (µAU)</th>
<th>Relative Area</th>
<th>Relative Height (%)</th>
<th>Amount (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>560.490</td>
<td>770.639</td>
<td>100.00</td>
<td>100.00</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Integration Results

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Retention Time (min)</th>
<th>Area (µL*µg)</th>
<th>Height (µAU)</th>
<th>Relative Area</th>
<th>Relative Height (%)</th>
<th>Amount (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>9.770</td>
<td>408.870</td>
<td>947.347</td>
<td>90.92</td>
<td>90.17</td>
<td>n.a.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13.487</td>
<td>18.897</td>
<td>7.955</td>
<td>3.08</td>
<td>0.03</td>
<td>n.a.</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>483.952</td>
<td>1065.552</td>
<td>100.00</td>
<td>100.00</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
(10) Synthesis of 3j

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.62 (d, $J = 8.0$ Hz, 1H), 7.35 (d, $J = 8.4$ Hz, 1H), 7.32-7.25 (m, 1H), 7.23-7.20 (m, 1H), 7.13 (t, $J = 7.2$ Hz, 1H), 7.01-6.97 (m, 2H), 6.93 (d, $J = 4.2$ Hz, 1H), 6.68 (d, $J = 2.4$ Hz, 1H), 4.56-4.50 (m, 1H), 4.13-4.04 (m, 1H), 3.93 (dd, $J = 16.8$, 8.8 Hz, 1H), 3.81 (s, 3H), 3.77-3.71 (m, 1H), 3.57-3.41 (m, 3H), 3.06-2.99 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 156.2, 148.7, 137.5, 126.9, 126.2, 126.1, 123.2, 123.1 122.0, 121.8, 119.5, 119.2, 118.0, 116.4, 109.4, 62.1, 49.1, 44.1, 42.1, 35.3, 32.8. MS (70 eV): m/z (%): 364 (M$^+$, 6.37), 119 (100). HRMS calcd for C$_{21}$H$_{20}$N$_2$O$_2$S: 364.1245, found: 364.1248. $[\alpha]_D^{20} = 3.2$ (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 90: 10, 0.8 mL/min, 210 nm); tr (minor) = 18.44 min, tr (major) = 20.89 min, 85% ee.
(11) Synthesis of 3k

Yellow solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.84 (d, $J = 8.0$ Hz, 1H), 7.79-7.70 (m, 3H), 7.58-7.49 (m, 2H), 7.46-7.40 (m, 1H), 7.37-7.22 (m, 3H), 7.08-7.00 (m, 2H), 6.54 (dd, $J = 4.4$, 2.0 Hz, 1H), 4.76-4.71 (m, 1H), 4.35-4.26 (m, 1H), 4.04-3.96 (m, 1H), 3.93-3.85 (m, 1H), 3.78 (s, 3H), 3.65-3.36 (m, 3H), 3.09-3.01 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 156.2, 139.9, 137.4, 133.9, 131.5, 128.6, 126.9, 126.6, 126.4, 125.64, 125.59, 125.5, 124.2, 123.5, 122.1, 121.9, 119.6, 119.2, 117.6, 116.9, 109.4, 62.1, 45.1, 44.3, 43.0, 34.0, 32.8. MS (70 eV): m/z (%): 408 (M$^+$, 41.13), 44 (100). HRMS calcld for C$_{27}$H$_{24}$N$_2$O$_2$: 408.1838, found: 408.1833. $[\alpha]_D^{20} = -62.0$ (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 90: 10, 0.8 mL/min, 210 nm); tr (minor) = 20.69 min, tr
(major) = 23.59 min, 89% ee.

(12) Synthesis of 31

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.36 (d, J = 7.2 Hz, 2H), 7.33-7.20 (m, 3H),
7.24-7.14 (m, 3H), 7.06-7.01 (m, 1H), 6.55 (s, 1H), 5.24-5.16 (m, 1H), 4.15 (dd, J = 14.8, 8.8 Hz, 1H), 3.93 (dd, J = 16.8, 8.8 Hz, 1H), 3.78 (s, 3H), 3.72 (dd, J = 17.2, 8.8 Hz, 1H), 3.59-3.49 (m, 1H), 3.42-3.33 (m, 2H), 2.85-2.76 (m, 1H). 1H NMR (100 MHz, CDCl$_3$) δ 156.3, 144.7, 138.4, 128.5, 128.2, 126.9, 126.2, 124.2, 123.7, 122.5, 117.9, 117.1, 118.0, 113.9, 108.7, 62.2, 48.3, 46.0, 44.1, 34.4, 33.1. MS (70 eV): m/z (%): 436 (M$^+$, 70.75), 438 (M$^+$+2, 70.09), 349 (100). HRMS calcd for C$_{23}$H$_{21}$N$_2$O$_2$Br: 346.0786, found: 346.0783. [α]$_D^{20}$ = -41.9 (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 95: 5, 1.0 mL/min, 233 nm; tr (minor) = 19.64 min, tr (major) = 21.26 min, 84% ee.
(13) Synthesis of 3m

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.42 (d, J = 8.4 Hz, 2H), 7.30-7.16 (m, 5H), 7.06 (t, J = 8.0 Hz, 1H), 6.58 (s, 1H), 5.16-5.10 (m, 1H), 4.21 (dd, J = 15.2, 8.8 Hz, 1H), 3.99 (dd, J = 16.4, 8.8 Hz, 1H), 3.80 (s, 3H), 3.76-3.70 (m, 1H), 3.58-3.49 (m, 1H), 3.41-3.26 (m, 2H), 2.78-2.70 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 156.3, 143.8, 138.4, 131.3, 128.7, 128.4, 123.7, 122.7, 119.8, 117.5, 113.8, 108.7, 62.2, 47.6, 46.0, 43.9, 34.4, 33.2. HRMS (ESI) calcld for C$_{23}$H$_{20}$N$_2$O$_2$Br$_2$ [M+Na$^+$]: 536.9784, found: 536.9778. $[\alpha]_D^{20} = 1.7$ (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 70: 30, 0.8 mL/min, 233 nm; tr (major) = 8.97 min, tr (minor) = 17.75 min, 84% ee.
(14) Synthesis of 3n

![Chemical structure of 3n]

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.45-7.33 (m, 4H), 7.32-7.22 (m, 3H), 7.10 (d, $J = 8.0$ Hz, 1H), 6.96 (s, 1H), 6.57 (d, $J = 2.0$ Hz, 1H), 4.46-4.44 (m, 1H), 4.11-4.02 (m, 1H), 3.93 (dd, $J = 16.8$, 8.8 Hz, 1H), 3.78 (s, 3H), 3.61-3.33 (m, 4H), 3.03-2.96 (m, 1H), 2.45 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 156.3, 144.9, 135.9, 128.5, 128.4, 126.5, 126.3, 126.1, 123.6, 123.2, 119.1, 117.5, 116.5, 109.0, 62.1, 47.7, 46.3, 44.2, 33.5, 32.8, 21.4. MS (70 eV): m/z (%): 372 (M$^+$, 100). HRMS calcld for C$_{24}$H$_{24}$N$_2$O$_2$: 372.1838, found: 372.1835. $[\alpha]_D^{20} = -5.1$ (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak OD-H, hexane/2-propanol = 80: 20, 0.6 mL/min, 210 nm; tr (major) = 16.92 min, tr (minor) = 19.70 min, 85% ee.
(15) Synthesis of 3o

![Chemical Structure of 3o](image)
White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.48-7.31 (m, 5H), 7.29-7.21 (m, 1H), 7.12 (s, 1H), 7.04 -6.87 (m, 2H), 6.55 (s, 1H), 4.51-4.40 (m, 1H), 4.10-4.02 (m, 1H), 3.90 (dd, J = 16.8, 8.4 Hz, 1H), 3.74 (s, 3H), 3.59-3.28 (m, 4H), 3.07-2.93 (m, 1H), 2.50 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 156.3, 144.9, 137.9, 131.9, 128.5, 126.5, 126.3, 125.4, 124.17, 123.0, 120.9, 119.2, 117.6, 117.0, 109.4, 62.1, 47.7, 46.4, 44.2, 33.5, 32.7, 21.8. MS (70 eV): m/z (%): 372 (M$^+$, 100). HRMS calcd for C$_{24}$H$_{24}$N$_2$O$_2$: 372.1838, found: 372.1844. [α]$^{	ext{D}}$_20 = 0.9 (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 95: 5, 0.8 mL/min, 233 nm; tr (minor) = 27.49 min, tr (major) = 30.11 min, 91% ee.
(16) Synthesis of 3p

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.28-7.21 (m, 4H), 7.22-7.12 (m, 2H), 6.85-6.82 (m, 2H), 6.78 (s, 1H), 6.46 (d, $J = 2.4$ Hz, 1H), 4.37-4.31 (m, 1H), 4.02-3.93 (m, 1H), 3.96 (s, 3H), 3.85 (dd, $J = 16.8$, 8.8 Hz, 1H), 3.49-3.33 (m, 3H), 3.30-3.21 (m, 1H), 2.91-2.82 (m, 1H), 2.69 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 156.3, 145.0, 136.2, 128.5, 127.6, 127.3, 126.5, 126.3, 124.6, 122.9, 121.4, 119.4, 117.6, 117.5, 116.8, 62.1, 47.4, 46.4, 44.1, 36.7, 33.6, 19.7. MS (70 eV): m/z (%): 372 (M$^+$, 81.09), 285 (100). HRMS calcd for C$_{24}$H$_{24}$N$_2$O$_2$: 372.1838, found: 372.1835. $[\alpha]_D^{20} = -23.5 \ (c = 0.3, \ CHCl_3)$. HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 90: 10, 0.8 mL/min, 254 nm; tr (minor) = 14.12 min, tr (major) = 17.00 min, 81% ee.

<table>
<thead>
<tr>
<th>Integration Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Total:</td>
</tr>
</tbody>
</table>
(17) Synthesis of 3q

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.47 (d, $J = 8.0$ Hz, 1H), 7.37-7.14 (m, 10H), 7.12-7.09 (m, 2H), 7.08-7.04 (m, 2H), 6.49 (dd, $J = 4.4$, 2.4 Hz, 1H), 5.28 (dd, $J = 22.4$, 16 Hz, 2H), 4.47-4.42 (m, 1H), 3.96-3.90 (m, 1H), 3.67 (dd, $J = 16.8$, 8.8 Hz, 1H), 3.62-3.53 (m, 1H), 3.43-3.25 (m, 3H), 3.03-2.95 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 156.2, 144.7, 137.6, 137.0, 128.8, 128.5, 127.8, 126.8, 126.52, 126.48, 126.4, 125.3, 123.3, 122.2, 119.6, 119.4, 117.6, 109.9, 61.9, 50.0, 47.7, 46.3, 44.3, 33.5. MS (70 eV): m/z (%): 434 (M$^+$, 59.67), 91 (100). HRMS calcld for C$_{29}$H$_{26}$N$_2$O$_2$: 434.1994, found: 434.1999. $[\alpha]_{D}^{20} = -7.7$ (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 95: 5, 1.0 mL/min, 233 nm; tr (minor) = 27.68 min, tr (major) = 36.82 min, 92% ee.
(18) Synthesis of 3r

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (d, $J = 8.0$ Hz, 1H), 7.34-7.18 (m, 7H),
7.14-7.03 (m, 4H), 6.87 (d, J = 8.8 Hz, 2H), 6.49 (d, J = 2.0 Hz, 1H), 5.28 (dd, J = 20.4, 16.0 Hz, 2H), 4.42-4.37 (m, 1H), 3.99-3.89 (m, 1H), 3.81 (s, 3H), 3.67 (dd, J = 17.2, 8.4 Hz, 1H), 3.51 (dd, J = 16.0, 7.2 Hz, 1H), 3.45-3.22 (m, 3H), 2.99-2.91 (m, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 158.2, 156.3, 137.6, 137.0, 136.9, 128.8, 127.8, 127.5, 126.8, 126.6, 125.3, 123.5, 122.2, 119.6, 119.4, 117.7, 117.6, 113.9, 109.9, 61.9, 55.3, 50.0, 47.9, 45.8, 44.4, 33.8. MS (70 eV): m/z (%): 464 (M\(^+\), 55.59), 91 (100). HRMS calcd for C\(_{30}\)H\(_{28}\)N\(_2\)O\(_3\): 464.2100, found: 464.2096. \([\alpha]\)\(_D\)\(^{20}\) = 20.7 (c = 0.3, CHCl\(_3\)). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 90: 10, 0.8 mL/min, 254 nm); tr (minor) = 36.88 min, tr (major) = 40.79 min, 95% ee.
(19) Synthesis of 3s

White solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.53 (d, \(J = 8.0\) Hz, 1H), 7.38-7.32 (m, 2H), 7.31-7.22 (m, 6H), 7.21-7.18 (m, 1H), 7.12-7.03 (m, 4H), 6.49 (d, \(J = 2.0\) Hz, 1H), 5.28 (dd, \(J = 20.4, 16.0\) Hz, 2H), 4.47-4.42 (m, 1H), 3.97-3.92 (m, 1H), 3.69 (dd, \(J = 17.2, 8.8\) Hz, 1H), 3.59-3.53 (m, 1H), 3.44-3.37 (dd, \(J = 15.2, 8.8\) Hz, 1H), 3.37-3.25 (m, 2H), 3.00-2.94 (m, 1H), 1.33 (s, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 156.2, 149.2, 141.7, 137.6, 137.0, 128.8, 127.8, 126.8, 126.6, 126.2, 125.3, 123.5, 122.2, 119.6, 119.4, 117.7, 117.5, 109.8, 61.9, 55.3, 50.0, 47.9, 45.8, 44.4, 33.8. MS (70 eV): m/z (%): 490 (M\(^+\), 55.59), 91 (100). HRMS calcd for C\(_{33}\)H\(_{34}\)N\(_2\)O\(_2\): 490.2620, found: 490.2617. \([\alpha]_D^{20}\) = 37.5 (c = 0.3, CHCl\(_3\)). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 90: 10, 0.8 mL/min, 254 nm; tr (minor) = 16.33 min, tr (major) = 23.47 min, 93% ee.
(20) Synthesis of 3t

White solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.45 (d, \(J = 8.0\) Hz, 1H), 7.39-7.14 (m, 9H), 7.13-7.04 (m, 4H), 6.51 (d, \(J = 2.4\) Hz, 1H), 5.32 (dd, \(J = 23.6, 16.0\) Hz, 2H), 4.42-4.37 (m, 1H), 3.98-3.91 (m, 1H), 3.72-3.64 (m, 1H), 3.58-3.52 (m, 1H), 3.47-3.28 (m, 3H), 2.98-2.91 (m, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 156.2, 143.1, 137.5, 137.0, 132.0, 128.8, 128.6, 127.9, 127.8, 126.7, 126.4, 125.3, 122.7, 122.3, 119.5, 119.4, 117.8, 117.3, 109.9, 61.9, 50.0, 47.8, 45.8, 44.3, 33.5. MS (70 eV): m/z (%): 468 (M\(^+\), 27.43), 91 (100). HRMS calcld for C\(_{29}\)H\(_{33}\)N\(_2\)O\(_2\)Cl: 468.1605, found: 468.1602. \([\alpha]_D^{20} = 36.9\) (c = 0.3, CHCl\(_3\)). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 90: 10, 0.8 mL/min, 210 nm); tr (minor) = 23.63 min, tr (major) = 28.74 min, 85% ee.
(21) Synthesis of 3u

White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.47 (d, $J = 8.0$ Hz, 1H), 7.37-7.27 (m, 5H), 7.26-7.16 (m, 2H), 7.09-7.01 (m, 2H), 6.52 (dd, $J = 4.4$, 2.0 Hz, 1H), 6.04-5.92 (m, 1H), 5.19 (dd, $J = 10.4$, 1.2 Hz, 1H), 5.04 (dd, $J = 16.8$, 1.2 Hz, 1H), 4.74-4.69 (m, 2H),
4.46-4.42 (m, 1H), 4.03-3.97 (m, 1H), 3.87-3.80 (m, 1H), 3.61-3.28 (m, 4H), 3.03-2.94 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 156.2, 144.7, 136.8, 133.4, 128.5, 126.4, 126.3, 125.0, 123.4, 122.0, 119.5, 119.4, 117.5, 117.3, 117.1, 109.7, 62.0, 48.7, 47.6, 46.3, 44.2, 33.6. MS (70 eV): m/z (%): 384 (M$^+$, 100). HRMS calcd for C$_{25}$H$_{24}$N$_2$O$_2$: 384.1838, found: 384.1840. [α]$^D_{20} = -18.5$ (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak AD-H, hexane/2-propanol = 90:10, 0.8 mL/min, 210 nm; tr (minor) = 14.41 min, tr (major) = 17.18 min, 93% ee.

(22) Synthesis of 3w
White solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.62 (d, J = 7.6 Hz, 1H), 7.38-7.22 (m, 2H), 7.19-7.13 (m, 1H), 6.94 (s, 1H), 6.46 (s, 1H), 4.21-4.06 (m, 1H), 4.01-3.91 (m, 2H), 3.79 (s, 3H), 3.62-3.49 (m, 2H), 3.11-3.05 (m, 1H), 2.43-2.32 (m, 2H), 1.36 (d, J = 6.4 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 156.3, 137.4, 126.4, 125.7, 123.7, 121.8, 119.1, 118.9, 117.5, 117.4, 109.3, 62.1, 45.9, 44.1, 36.8, 33.8, 32.7, 21.4. MS (70 eV): m/z (%): 296 (M+, 24.35), 57 (100). HRMS calcd for C$_{18}$H$_{20}$N$_2$O$_2$: 296.1525, found: 196.1528. [α]$_D^{20}$ = -30.5 (c = 0.3, CHCl$_3$). HPLC conditions: Chiralpak OD-H, hexane/2-propanol = 70: 30, 0.8 mL/min, 233 nm); tr (minor) = 8.10 min, tr (major) = 10.24 min, 69% ee.
6. References

7. X-ray crystal data
(S, R)-X8

(S, R)-X8
$1w \text{ (E:Z = 1.56:1)}$