Cobalt(III)-Catalyzed Efficient Synthesis of Indenones through Carboannulation of Benzoates and Alkynes

Lingheng Kong, Xifa Yang, Xukai Zhou, Songjie Yu,* Xingwei Li*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Table of Contents

I. General ... 2

II. General procedures for the synthesis of compound 3 .. 2

III. Mechanistic Studies .. 9

1. KIE measurements of reaction for indenones ... 9

2. Competitive Experiment .. 10

IV. References ... 11

V. NMR Spectra ... 12
I. General

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. Diphenylacetylenes\(^1\) and \([\text{CoCp}^*(\text{CO})\text{I}_2]\)\(^2\) were prepared by following literature reports. All reactions were carried out using Schlenk techniques or in an \(\text{N}_2\)-filled glovebox. NMR Spectra were recorded on a 400 MHz NMR spectrometer in the solvent indicated. The chemical shift is given in dimensionless \(\delta\) values and is frequency referenced relative to TMS in \(^1\text{H}\) and \(^{13}\text{C}\) NMR spectroscopy. HRMS data were obtained on a Thermo Scientific LTQ Orbitrap Discovery spectrometer (Bremen, Germany). Column chromatography was performed on silica gel (300–400 mesh) using dichloromethane (DCM)/petroleum ether (PE).

II. General procedures for the synthesis of compound 3

Benzoates (0.2 mmol), alkynes (0.24 mmol), \([\text{Cp}^*\text{Co(\text{CO})I}_2]\) (10 mol %), \(\text{AgNTf}_2\) (20 mol %), \(\text{Zn(OAc)}_2\) (2.0 equiv), and HFIP (2.0 mL) were charged into the pressure tube. The reaction mixture was stirred under \(\text{N}_2\) at 120 \(^\circ\text{C}\) for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/DCM to afford the product 3.

2,3-Diphenyl-1H-inden-1-one (3aa)

3aa was obtained according to the general procedure in 86\% yield (48.5 mg). red solid;
\(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.58 (d, \(J = 6.8\) Hz, 1H), 7.44 – 7.32 (m, 6H), 7.29 – 7.25 (m, 6H), 7.14 (d, \(J = 7.1\) Hz, 1H). \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 196.5, 155.4, 145.3, 133.5, 132.8, 132.4, 130.8, 130.7, 130.0, 129.3, 129.0, 128.8, 128.5, 128.1, 127.8, 123.0, 121.3. The NMR data agree with those in a literature report.\(^3\)

5-Methyl-2,3-diphenyl-1H-inden-1-one (3ba)

3ba was obtained according to the general procedure in 91\% yield (53.9 mg). red solid;
\(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.47 (d, \(J = 7.2\) Hz, 1H), 7.30 – 7.35 (m, 5H), 7.27 – 7.23 (m, 5H), 7.06 (d, \(J = 7.1\) Hz, 1H), 6.93 (s, 1H), 2.33 (s, 3H). \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 196.2, 154.9, 145.6, 144.4, 132.8, 132.7, 130.8, 129.9, 129.1, 128.9, 128.7, 128.5, 128.3, 128.0, 127.6, 123.0, 122.5, 22.1. The NMR data agree with those in a literature report.\(^3\)
5-Methoxy-2,3-diphenyl-1H-inden-1-one (3ca)

3ca was obtained according to the general procedure in 77% yield (47.8 mg). Red solid;
1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 7.9 Hz, 1H), 7.40 – 7.34 (m, 5H), 7.30 – 7.20 (m, 5H), 6.73 – 6.63 (m, 2H), 3.82 (s, 3H).
13C NMR (100 MHz, CDCl3) δ 195.1, 164.5, 153.2, 147.9, 133.9, 132.7, 130.9, 130.0, 129.2, 128.8, 128.6, 128.1, 127.8, 124.9, 123.5, 110.5, 110.3, 55.8. The NMR data agree with those in a literature report.

5-Fluoro-2,3-diphenyl-1H-inden-1-one (3da)

3da was obtained according to the general procedure in 51% yield (30.3 mg). Red solid;
1H NMR (400 MHz, CDCl3) δ 7.57 (dd, J = 7.8, 5.2 Hz, 1H), 7.45 – 7.39 (m, 3H), 7.37 – 7.34 (m, 2H), 7.26 – 7.24 (m, 5H), 6.96 – 6.89 (m, 1H), 6.86 (dd, J = 8.5, 1.9 Hz, 1H).
13C NMR (100 MHz, CDCl3) δ 194.8, 166.5 (d, JCF = 252.9 Hz), 153.2 (d, JCF = 2.4 Hz), 148.6 (d, JCF = 9.3Hz), 133.7 (d, JCF = 1.0 Hz), 132.2, 130.4, 120.0, 129.5, 129.0, 128.4, 128.2, 128.1, 126.5 (d, JCF = 3.2 Hz), 124.8 (d, JCF = 9.7 Hz), 114.4 (d, JCF = 23.0 Hz), 110.2 (d, JCF = 25.7 Hz). The NMR data agree with those in a literature report.

5-Chloro-2,3-diphenyl-1H-inden-1-one (3ea)

3ea was obtained according to the general procedure in 58% yield (36.6 mg). Red solid;
1H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 7.6 Hz, 1H), 7.43 – 7.41 (m, 3H), 7.38 – 7.34 (m, 2H), 7.28 – 7.24 (m, 6H), 7.11 (d, J = 1.6 Hz, 1H).
13C NMR (100 MHz, CDCl3) δ 195.0, 154.0, 147.3, 139.8, 133.5, 132.2, 130.3, 130.0, 129.6, 129.0, 128.9, 128.5, 128.4, 128.2, 128.1, 123.9, 122.0. The NMR data agree with those in a literature report.

5-Bromo-2,3-diphenyl-1H-inden-1-one (3fa)

3fa was obtained according to the general procedure in 54% yield (39.1 mg). Red solid;
1H NMR (400 MHz, CDCl3) δ 7.47 – 7.40 (m, 5H), 7.36 – 7.34 (m, 2H), 7.27 – 7.24 (m, 6H). 13C NMR
(100 MHz, CDCl$_3$) δ 195.3, 154.3, 147.4, 133.5, 132.3, 131.8, 130.4, 130.1, 129.7, 129.5, 129.1, 128.5, 128.44, 128.3, 128.2, 124.8, 124.2. The NMR data agree with those in a literature report.5

5-Iodo-2,3-diphenyl-1H-inden-1-one (3ga)

3ga was obtained according to the general procedure in 55% yield (44.5 mg). red solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.69 (dd, J = 7.5, 1.1 Hz, 1H), 7.46 (d, J = 0.8 Hz, 1H), 7.43 – 7.41 (m, 3H), 7.36 – 7.33 (m, 2H), 7.30 (d, J = 7.5 Hz, 1H), 7.27 – 7.24 (m, 5H). 13C NMR (100 MHz, CDCl$_3$) δ 195.6, 154.4, 146.9, 138.0, 133.1, 132.2, 130.2, 130.0, 129.6, 129.0, 128.4, 128.2, 128.1, 124.2, 100.9. HRMS: [M + H]$^+$ calculated for C$_{21}$H$_{14}$IO$^+$: 409.0084, found: 409.0084.

6-Methoxy-2,3-diphenyl-1H-inden-1-one (3ha), major : minor = 1.2:1

3ha was obtained according to the general procedure in 87% yield (54.6 mg). red solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.42 – 7.35 (m, 3H), 7.34 – 7.28 (m, 2H), 7.26 – 7.22 (m, 4H), 7.21 – 7.12 (m, 3H), 7.03 (d, J = 8.0 Hz, 1H), 3.83 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 196.2, 161.1, 154.0, 136.9, 131.1, 130.1, 129.9, 129.4, 128.8, 128.5, 128.1, 127.9, 127.6, 122.3, 119.7, 116.1, 110.7, 55.7. HRMS: [M + H]$^+$ calculated for C$_{22}$H$_{17}$O$_2$$^+$: 313.1223, found: 313.1222.

6-Fluoro-2,3-diphenyl-1H-inden-1-one (3ia), major : minor = 15:1

3ia was obtained according to the general procedure in 90% yield (54.0 mg). red solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.32 (m, 6H), 7.30 – 7.15 (m, 6H), 7.06 (t, J = 9.2 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 195.2, 156.1 (d, $J_{C,F}$ = 255.9 Hz), 154.4 (d, $J_{C,F}$ = 3.4 Hz), 133.7 (d, $J_{C,F}$ = 2.6 Hz), 133.5 (d, $J_{C,F}$ = 3.8 Hz), 133.46, 133.4, 131.4 (d, $J_{C,F}$ = 6.8 Hz), 130.3, 130.1, 129.3, 128.54 (d, $J_{C,F}$ = 2.7 Hz), 128.3, 128.1, 127.9, 123.4 (d, $J_{C,F}$ = 23.1 Hz), 119.2 (d, $J_{C,F}$ = 2.6 Hz). 19F NMR (376 MHz, CDCl$_3$) δ -115.2. HRMS: [M + H]$^+$ calculated for C$_{22}$H$_{17}$FO$^+$: 301.1023, found: 301.1027.

6-Chloro-2,3-diphenyl-1H-inden-1-one (3ja), major : minor = 3.2:1

3ja was obtained according to the general procedure in 47% yield (30.0 mg). red solid;
1H NMR (400 MHz, CDCl$_3$) δ 7.54 (d, J = 1.8 Hz, 1H), 7.44 – 7.39 (m, 3H), 7.39 – 7.34 (m, 3H), 7.27 – 7.24 (m, 5H), 7.08 (d, J = 7.8 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 195.1, 155.1, 143.3, 135.0, 132.6, 132.4, 130.4, 129.9, 129.6, 128.9, 128.4, 128.2, 127.9, 123.6, 122.2. HRMS: [M + H]$^+$ calculated for C$_{21}$H$_{14}$ClO$: 317.0728$, found: 317.0730.

7-Methyl-2,3-diphenyl-1H-inden-1-one (3ka)
3ka was obtained according to the general procedure in 85% yield (50.3 mg). red solid;
1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.32 (m, 5H), 7.28 – 7.17 (m, 6H), 7.04 (d, J = 7.8 Hz, 1H), 6.95 (d, J = 7.2 Hz, 1H), 2.61 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 197.7, 154.3, 145.7, 138.0, 133.0, 132.6, 132.4, 132.2, 131.0, 130.1, 129.1, 128.8, 128.6, 128.0, 127.6, 127.1, 119.3, 17.4. The NMR data agree with those in a literature report.

7-Fluoro-2,3-diphenyl-1H-inden-1-one (3la)
3la was obtained according to the general procedure in 29% yield (17.4 mg). red solid;
1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.31 (m, 3H), 7.30 – 7.24 (m, 3H), 7.20 – 7.15 (m, 5H), 6.88 (t, J = 8.4 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 192.6 (d, J_{CF} = 1.4 Hz), 157.9 (d, J_{CF} = 262.3 Hz), 154.5 (d, J_{CF} = 4.7 Hz), 147.4 (d, J_{CF} = 3.5 Hz), 135.8 (d, J_{CF} = 8.3 Hz), 133.0 (d, J_{CF} = 1.3 Hz), 132.5, 130.2, 130.1, 129.4, 128.9, 128.5, 128.1, 128.0, 118.3 (d, J_{CF} = 21.5 Hz), 117.7 (d, J_{CF} = 2.4 Hz), 115.6 (d, J_{CF} = 12.4 Hz). HRMS: [M + H]$^+$ calculated for C$_{21}$H$_{14}$FO$: 301.1023$, found: 301.1021.

7-Bromo-2,3-diphenyl-1H-inden-1-one (3ma)
3ma was obtained according to the general procedure in 42% yield (30.3 mg). red solid;
1H NMR (400 MHz, CDCl$_3$) δ 7.45 – 7.32 (m, 6H), 7.30 – 7.18 (m, 6H), 7.09 (d, J = 7.2 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 193.7, 153.4, 148.2, 134.1, 134.0, 132.9, 132.2, 130.1, 129.4, 128.9, 128.5, 128.1, 128.0, 127.6, 120.5, 119.1. HRMS: [M + H]$^+$ calculated for C$_{21}$H$_{14}$BrO$: 361.0223$, found:
2,3-Diphenyl-1H-cyclopenta[a]napthalen-1-one (3na)

3na was obtained according to the general procedure in 70% yield (46.8 mg). red solid;
1H NMR (400 MHz, CDCl$_3$) δ 8.81 (d, $J = 8.5$ Hz, 1H), 7.86 (d, $J = 8.1$ Hz, 1H), 7.73 (d, $J = 8.3$ Hz, 1H), 7.53 (t, $J = 7.4$ Hz, 1H), 7.47 – 7.41 (m, 5H), 7.36 (t, $J = 7.4$ Hz, 1H), 7.33 – 7.23 (m, 6H) 13C NMR (100 MHz, CDCl$_3$) δ 198.6, 153.8, 146.7, 134.2, 132.8, 131.2, 130.8, 130.1, 129.4, 129.3, 129.2, 128.9, 128.6, 128.4, 128.1, 127.7, 126.0, 123.9, 122.4, 119.3. HRMS: [M + H]$^+$ calculated for C$_{25}$H$_{17}$O$: 333.1274, found: 333.1277.

2,3-Di-p-tolyl-1H-inden-1-one (3ab)

3ab was obtained according to the general procedure in 38% yield (23.6 mg). red solid;
1H NMR (400 MHz, CDCl$_3$) δ 7.56 (d, $J = 6.9$ Hz, 1H), 7.37 – 7.33 (m, 1H), 7.30 – 7.18 (m, 6H), 7.17 – 7.13 (m, 2H), 7.09 – 7.07 (m, 2H), 2.40 (s, 3H), 2.32 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 196.8, 154.8, 145.5, 139.4, 137.5, 133.3, 132.1, 130.9, 129.9, 129.8, 129.5, 128.9, 128.7, 128.5, 128.0, 122.8, 121.1, 21.5, 21.4. The NMR data agree with those in a literature report.5

2,3-Bis(4-(tert-butyl)phenyl)-1H-inden-1-one (3ac)

3ac was obtained according to the general procedure in 45% yield (35.5 mg). red solid;
1H NMR (400 MHz, CDCl$_3$) δ 7.56 (d, $J = 6.9$ Hz, 1H), 7.44 – 7.41 (m, 2H), 7.36 – 7.33 (m, 3H), 7.30 – 7.22 (m, 5H), 7.16 (d, $J = 7.2$ Hz, 1H), 1.36 (s, 9H), 1.30 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 197.0, 154.7, 152.5, 150.6, 145.6, 133.3, 131.8, 130.9, 129.9, 129.6, 128.7, 128.3, 127.9, 125.6, 125.0, 122.8, 121.3, 34.9, 34.6, 31.3. The NMR data agree with those in a literature report.5
2,3-Bis(4-fluorophenyl)-1H-inden-1-one (3ad)

3ad was obtained according to the general procedure in 90% yield (57.6 mg). red solid;

1H NMR (400 MHz, CDCl$_3$) δ 7.57 (d, $J = 7.0$ Hz, 1H), 7.40 – 7.35 (m, 3H), 7.31 – 7.27 (m, 1H), 7.25 – 7.21 (m, 2H), 7.14 – 7.10 (m, 3H), 7.00 – 6.94 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 196.2, 163.2 (d, $J_{CF} = 248.7$ Hz), 162.4 (d, $J_{CF} = 247.0$ Hz), 154.2, 144.9, 133.6, 131.8 (d, $J_{CF} = 8.0$ Hz), 131.5, 130.6, 130.5 (d, $J_{CF} = 8.2$ Hz), 129.2, 128.5 (d, $J_{CF} = 3.4$ Hz), 126.6 (d, $J_{CF} = 3.4$ Hz), 123.2, 121.1, 116.2 (d, $J_{CF} = 21.6$ Hz), 115.4 (d, $J_{CF} = 21.4$ Hz). HRMS: [M + H]$^+$ calculated for C$_{21}$H$_{13}$F$_2$O$: 319.0929, found: 319.0929.

2,3-Bis(4-chlorophenyl)-1H-inden-1-one (3ae)

3ae was obtained according to the general procedure in 86% yield (60.4 mg). red solid;

1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, $J = 6.9$ Hz, 1H), 7.42 – 7.36 (m, 3H), 7.33 – 7.27 (m, 3H), 7.27 – 7.23 (m, 2H), 7.19 (d, $J = 8.6$ Hz, 2H), 7.10 (d, $J = 7.2$ Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 195.8, 154.3, 144.6, 135.6, 134.1, 133.7, 131.5, 131.2, 130.9, 130.5, 129.9, 129.4, 129.3, 128.9, 128.6 123.3, 121.2. The NMR data agree with those in a literature report.4

2,3-Bis(4-bromophenyl)-1H-inden-1-one (3af)

3af was obtained according to the general procedure in 73% yield (64.4 mg). red solid;

1H NMR (400 MHz, CDCl$_3$) δ 7.61 – 7.54 (m, 3H), 7.41 – 7.38 (m, 3H), 7.33 – 7.22 (m, 3H), 7.13 – 7.09 (m, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 195.7, 154.4, 144.6, 133.7, 132.3, 131.5, 131.4, 131.3, 130.5, 130.1, 129.4, 129.3, 123.9, 123.3, 122.4, 121.2. The NMR data agree with those in a literature report.5
2,3-Di-m-tolyl-1H-inden-1-one (3ag)

3ag was obtained according to the general procedure in 56% yield (35.0 mg). red solid;

1H NMR (400 MHz, CDCl$_3$) δ 7.56 (d, $J = 7.0$ Hz, 1H), 7.36 (t, $J = 7.0$ Hz, 1H), 7.29 – 7.24 (m, $J = 8.2$, 4.3 Hz, 2H), 7.22 – 7.18 (m, 2H), 7.17 – 7.09 (m, 4H), 7.05 (d, $J = 7.5$ Hz, 1H), 7.00 (d, $J = 7.5$ Hz, 1H), 2.34 (s, 3H), 2.27 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 196.7, 155.4, 145.4, 138.4, 137.5, 133.4, 132.8, 132.4, 130.8, 130.7, 130.6, 130.0, 128.9, 128.7, 128.5, 127.9, 127.1, 125.7, 122.9, 121.3, 21.5, 21.4. The NMR data agree with those in a literature report.³

2,3-Bis(3-fluorophenyl)-1H-inden-1-one (3ah)

3ah was obtained according to the general procedure in 88% yield (56.0 mg). red solid;

1H NMR (400 MHz, CDCl$_3$) δ 7.52 (d, $J = 6.8$ Hz, 1H), 7.36 – 7.30 (m, 2H), 7.25 – 7.22 (m, 1H), 7.17 – 7.12 (m, 1H), 7.09 – 6.97 (m, 4H), 6.97 – 6.85 (m, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 195.6, 162.9 (d, $J_{C,F} = 246.4$ Hz), 162.5 (d, $J_{C,F} = 243.9$ Hz), 154.7 (d, $J_{C,F} = 1.9$ Hz), 144.6, 134.5 (d, $J_{C,F} = 8.0$ Hz), 133.8, 132.4 (d, $J_{C,F} = 8.4$ Hz), 131.7 (d, $J_{C,F} = 2.1$ Hz), 130.8 (d, $J_{C,F} = 8.2$ Hz), 130.4, 129.7 (d, $J_{C,F} = 8.3$ Hz), 129.5, 125.7 (d, $J_{C,F} = 2.7$ Hz), 124.2 (d, $J_{C,F} = 2.9$ Hz), 123.4, 121.4, 116.8 (d, $J_{C,F} = 22.2$ Hz), 116.6 (d, $J_{C,F} = 21.0$ Hz), 115.4 (d, $J_{C,F} = 22.3$ Hz), 115.0 (d, $J_{C,F} = 20.8$ Hz). The NMR data agree with those in a literature report.⁶

2,3-Bis(3-chlorophenyl)-1H-inden-1-one (3ai)

3ai was obtained according to the general procedure in 84% yield (59.1 mg). red solid;

1H NMR (400 MHz, CDCl$_3$) δ 7.51 (d, $J = 6.4$ Hz, 1H), 7.32 – 7.22 (m, 6H), 7.18 – 7.08 (m, 3H), 7.04 – 6.99 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 195.5, 154.5, 144.5, 154.5, 135.0, 134.1, 134.12, 133.8, 132.08, 131.6, 130.4, 130.3, 129.9, 129.7, 129.5, 129.4, 128.2, 128.19, 128.1, 126.8, 123.4, 121.4. The NMR data agree with those in a literature report.³
2,3-Bis(3-bromophenyl)-1H-inden-1-one (3aj)

3aj was obtained according to the general procedure in 83% yield (73.0 mg), red solid;

1H NMR (400 MHz, CDCl$_3$) δ 7.63 – 7.53 (m, 3H), 7.46 (s, 1H), 7.43 – 7.37 (m, 2H), 7.34 – 7.22 (m, 3H), 7.16 – 7.08 (m, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 195.5, 154.4, 144.4, 134.4, 133.8, 132.7, 132.6, 132.3, 131.5, 131.1, 131.0, 130.6, 130.3, 129.7, 129.6, 128.5, 127.2, 123.4, 123.0, 122.3, 121.4.

HRMS: [M + H]$^+$ calculated for C$_{21}$H$_{13}$Br$_2$O$: 438.9328$, found: 438.9326.

III. Mechanistic Studies

1. KIE measurements of reaction for indenones

A mixture of ethyl benzoate 1a (0.2 mmol, 30.0 mg), diphenylacetylene 2a (0.24 mmol, 42.8 mg), [Cp*Co(CO)$_2$I$_2$] (10 mol %, 9.5 mg), AgNTf$_2$ (20 mol %, 16.0 mg), Zn(OAc)$_2$ (2.0 equiv, 73.4 mg), and HFIP (2.0 mL) were charged into a pressure tube under N$_2$. In another tube were added a mixture of ethyl benzoate-d$_5$ 1a$'$ (0.2 mmol, 31.0 mg), diphenylacetylene 2a (0.24 mmol, 42.8 mg), [Cp*Co(CO)$_2$I$_2$] (10 mol %, 9.5 mg), AgNTf$_2$ (20 mol %, 16.0 mg), Zn(OAc)$_2$ (2.0 equiv, 73.4 mg), and HFIP (2.0 mL) were charged into a pressure tube under N$_2$. These two reaction mixtures were stirred side-by-side in the same oil bath at 100 °C for 20 min. These two mixtures were rapidly combined and all the volatiles were rapidly removed under reduced pressure. The residue was purified by silica gel chromatography using PE/DCM to afford the mixed product. KIE value ($k_{\text{H}}/k_{\text{D}} = 4.5$) was estimated on the basis of 1H NMR analysis. No H/D exchanged in the reaction product was observed. If the relative amount of D is x and $1*14 + 10*x = 16.23$, then $x = 0.223$. KIE = $1/x = 4.5$.

9
2. Competitive Experiment

An equimolar mixture of acetanilide 1b (0.2 mmol, 32.0 mg) and 1e (0.2 mmol, 37.0 mg), diphenylacetylene 2a (0.2 mmol, 36.0 mg), [Cp*Co(CO)]_2 (10 mol %, 9.5 mg), AgNTf_2 (20 mol %, 16.0 mg), Zn(OAc)_2 (2.0 equiv, 73.4 mg), and HFIP (2.0 mL) were charged into a pressure tube under N_2. The reaction mixture was stirred at 120 °C for 6 h. The solvent was rapidly removed under reduced pressure and the residue was purified by silica gel chromatography using PE/DCM to afford the mixed product. The yield ratio (3ba/3ea = 2.3:1) was determined on the basis of ^1H NMR analysis.
IV. References

V. NMR Spectra

3aa

3ba
3da
3ga
3ka
3ma