Electronic Supplementary Information

Synthesis, structure and optical property of tetraphenylethene derivatives with through-space conjugation between benzene and various planar chromophores

Bairong He,a Han Nie,a Wenwen Luo,a Rongrong Hu,a Anjun Qin,a Zujin Zhao*,a and Ben Zhong Tang*,a,b,c

a State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
b Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
c Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong, China

* Corresponding Author: E-mail: mszjzhao@scut.edu.cn, tangbenz@ust.hk.

1. General

Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under dry nitrogen immediately prior to use. All chemicals and reagents were purchased from commercial sources and used as received without further purification. 1H and 13C NMR spectra were measured on a Bruker AV 500 spectrometer or Bruker AV 300 spectrometer in appropriate deuterated solution at room temperature. High resolution mass spectra (HRMS) were recorded on a GCT premier CAB048 mass spectrometer operating in MALDI-TOF mode. Single crystal X-ray diffraction intensity data were collected on a Bruker–Nonices Smart Apex CCD diffractometer with graphite monochromated MoKα or CuKα radiation. Processing of the intensity data was carried out using the SAINT and SADABS routines, and the structure and refinement were conducted using the SHELTL suite of
X-ray programs (version 6.10). UV-vis absorption spectra were measured on a Shimadzu UV-2600 spectrophotometer. Photoluminescence spectra were recorded on a Horiba Fluoromax-4 spectrofluorometer. Fluorescence quantum yields were measured using a Hamamatsu absolute PL quantum yield spectrometer C11347 Quantaurus-QY. The ground-state and excited state geometries were optimized using the density function theory (DFT) method with ωB97XD hybrid functional at the basis set level of 6-31g*. All the calculations were performed using Gaussian 09 package.

2. Synthesis and Characterization

General procedures for the synthesis of o-TPEAr: A mixture of compound o-TPEBr1 (5 mmol), arylboronic acid (6 mmol), Pd(PPh₃)₄ (0.58 g, 0.5 mmol), and potassium carbonate (3.5 g, 25 mmol) in 100 mL of toluene/ethanol/water (8/1/1 v/v/v) was heated to reflux for 12 h under nitrogen. The reaction mixture was cooled to room temperature, poured into water, and extracted twice with dichloromethane. The combined organic layers were washed with saturated brine solution and water, and dried over anhydrous magnesium sulfate. After filtration and solvent evaporation, the residue was purified by silica-gel column chromatography using hexane/dichloromethane as eluent.

o-TPEPh: White solid, yield 85%. ¹H NMR (500 MHz, CDCl₃), δ (TMS, ppm): 7.25–7.11 (m, 7H), 7.09–7.05 (m, 5H), 7.02–6.96 (m, 6H), 6.95–6.93 (m, 2H), 6.90–6.87 (m, 2H), 6.49–6.46 (m, 2H). ¹³C NMR (125 MHz, CDCl₃), δ (TMS, ppm): 143.9, 143.8, 143.0, 142.0, 141.9, 141.4, 141.1, 138.6, 132.8, 131.4, 131.2, 130.9, 130.3, 128.8, 127.6, 127.5, 127.3, 127.2, 127.1, 126.8, 126.3, 126.2, 126.1, 126.0. HRMS (C₃₂H₂₄): m/z 408.1868 (M + Na⁺, calcd 431.1878).

o-2-TPENp: White solid, yield 80%. ¹H NMR (300 MHz, CDCl₃) δ (TMS, ppm): 7.75–7.59 (m, 3H), 7.47–7.36 (m, 3H), 7.29–7.22 (m, 5H), 7.11–6.90 (m, 11H), 6.78–6.73 (m, 2H), 6.29 (d, 2H, J = 7.8 Hz). ¹³C NMR (75 MHz, CDCl₃), δ (TMS, ppm): 144.6, 144.5, 142.7, 142.2, 139.8, 139.1, 134.1, 133.6, 132.7, 132.2, 131.9, 131.5, 131.2, 128.8, 128.5, 128.2, 128.1, 128.0, 127.7, 127.6, 127.2, 127.0, 126.9, 126.7, 126.2, 126.1. HRMS (C₃₆H₂₆): m/z 458.2032 (M⁺, calcd 458.2035).

o-TPEAn: White solid, yield 75%. ¹H NMR (300 MHz, CDCl₃) δ (TMS, ppm): 8.21 (s, 1H), 7.82 (br, 2H), 7.47 (dd, J = 8.2, 1.1 Hz, 2H), 7.38–7.15 (m, 12H), 6.98–6.89 (m, 1H), 6.84–6.79
(m, 3H), 6.58–6.55 (m, 2H), 6.25–6.13 (m, 3H), 5.90–5.87 (m, 2H). 13C NMR (75 MHz, CDCl$_3$), δ(TMS, ppm): 144.4, 144.1, 143.4, 142.5, 141.9, 141.2, 139.7, 137.3, 134.4, 133.8, 131.7, 131.3, 131.0, 130.7, 130.2, 128.6, 128.4, 127.7, 127.5, 127.2, 127.0, 126.9, 126.3, 126.2, 125.2, 125.0, 124.9. HRMS (C$_{40}$H$_{28}$): m/z 508.2151 (M$^+$, calcld 508.2191).

o-TPEPa: White solid, yield 72%. 1H NMR (300 MHz, CDCl$_3$) δ(TMS, ppm): 8.64–8.45 (m, 2H), 7.84–7.07 (m, 17H), 6.91–6.77 (m, 5H), 6.62–6.56 (m, 1H), 6.36–6.27 (m, 3H). 13C NMR (75 MHz, CDCl$_3$), δ(TMS, ppm): 144.1, 141.5, 140.7, 134.5, 133.5, 133.1, 132.6, 132.2, 131.9, 131.6, 131.3, 129.5, 129.3, 128.4, 128.1, 127.8, 127.7, 127.6, 127.2, 127.0, 126.9, 126.3, 126.2, 126.1, 126.0, 125.4, 123.0, 122.8, 122.6. HRMS (C$_{40}$H$_{28}$): m/z 508.2191 (M$^+$, calcld 508.2191).

o-TPEPy: White solid, yield 68%. The products of o-TPEPy are isomeric mixtures, and thus the peaks are hard to be integrated. The major isomeric product is discussed in the paper. 1H NMR (300 MHz, CDCl$_3$) δ(TMS, ppm): 8.19–8.16 (m), 8.13–8.16 (m), 8.01–7.90 (m), 7.62–7.58 (m), 7.42–7.32 (m), 7.28–7.12 (m), 6.95–6.93 (m), 6.89–6.87 (m), 6.78–6.77 (m), 6.71–6.68 (m), 6.35–6.32 (m), 6.21–6.19 (m), 6.09–6.07 (m), 6.03–5.99 (m), 5.84–5.81 (m). 13C NMR (75 MHz, CDCl$_3$), δ(TMS, ppm): 145.3, 144.8, 144.0, 142.9, 142.5, 141.1, 138.6, 137.9, 137.4, 134.6, 133.7, 132.5, 131.9, 131.7, 131.5, 131.4, 130.8, 130.6, 130.1, 128.3, 128.1, 127.9, 127.7, 127.4, 127.3, 127.1, 126.8, 126.3, 125.2, 125.0, 124.5, 124.0. HRMS (C$_{42}$H$_{28}$): m/z 532.2198 (M$^+$, calcld 532.2191).

X-ray crystallography

Crystal data for o-TPEPh (CCDC 1432503): C$_{32}$H$_{24}$, MW = 408.51, monoclinic, P2(1)/n, $a = 9.4248(7)$, $b = 9.6366(7)$, $c = 25.0543(16)$ Å, $\beta = 94.474(2)^o$, $V = 2268.6(3)$ Å3, $Z = 4$, $Dc = 1.196$ g cm$^{-3}$, $\mu = 0.068$ mm$^{-1}$ (MoKα, $\lambda = 0.71073$), $F(000) = 864$, $T = 173(2)$ K, $2\theta_{max} = 25.360$ (97.1^o), 12809 measured reflections, 4044 independent reflections ($R_{int} = 0.0495$), GOF on $F^2 = 1.043$, $R_1 = 0.0816$, wR$_2 = 0.1000$ (all data), Δe 0.141 and -0.166 eÅ$^{-3}$.

Crystal data for o-2-TPENp (CCDC 955717): C$_{36}$H$_{26}$, $MW = 458.57$, triclinic, P-1, $a = 9.2253(12)$, $b = 12.0172(19)$, $c = 12.8207(16)$ Å, $\alpha = 65.023(14)^o$, $\beta = 76.245(11)^o$, $\gamma = 83.655(12)^o$, $V = 1251.4(3)$ Å3, $Z = 2$, $Dc = 1.217$ g cm$^{-3}$, $\mu = 0.520$ mm$^{-1}$ (CuKα, $\lambda = 1.5418$), $F(000) = 484$, $T = 143$ K, $2\theta_{max} = 66.5$ (97.4^o), 7446 measured reflections, 4372 independent reflections ($R_{int} = 0.0420$), GOF on $F^2 = 1.003$, $R_1 = 0.0532$, wR$_2 = 0.0973$ (all data), Δe 0.169
and -0.210 eÅ^{-3}.

Crystal data for o-TPEAn (CCDC 1432504): $C_{40}H_{28}$, $MW = 508.62$, monoclinic, $P2\overline{1}/c$, $a = 16.4844(14)$, $b = 9.1722(12)$ Å, $c = 19.225(3)$ Å, $\beta = 107.472(12)^\circ$, $V = 2772.7(6)$ Å3, $Z = 4$, $D_c = 1.218 \text{ g cm}^{-3}$, $\mu = 0.521 \text{ mm}^{-1}$ (CuKα, $\lambda = 1.54178$), $F(000) = 1072$, $T = 143$ K, $2\theta_{\text{max}} = 66.5 (97.3\%)^\circ$, 9173 measured reflections, 4859 independent reflections ($R_{\text{int}} = 0.0395$), GOF on $F^2 = 1.006$, $R_1 = 0.0563$, $wR_2 = 0.0872$ (all data), $\Delta e 0.149$ and -0.207 eÅ^{-3}.

Crystal data for o-TPEPa (CCDC 1432505): $C_{40}H_{28}$, $MW = 508.62$, monoclinic, $P2(1)/n$, $a = 11.3717(2)$, $b = 15.9519(3)$, $c = 15.1309(3)$ Å, $\beta = 93.429(2)^\circ$, $V = 2739.83(9)$ Å3, $Z = 4$, $D_c = 1.233 \text{ g cm}^{-3}$, $\mu = 0.528 \text{ mm}^{-1}$ (CuKα, $\lambda = 1.54178$), $F(000) = 1072$, $T = 173(2)$ K, $2\theta_{\text{max}} = 66.5 (97.7\%)^\circ$, 9542 measured reflections, 4830 independent reflections ($R_{\text{int}} = 0.0270$), GOF on $F^2 = 1.023$, $R_1 = 0.0443$, $wR_2 = 0.0995$ (all data), $\Delta e 0.176$ and -0.172 eÅ^{-3}.

Crystal data for o-TPEPy (CCDC 1432506): $C_{42}H_{28}$, $MW = 532.64$, monoclinic, $P12_1/c1$, $a = 9.5798(2)$, $b = 10.2198(3)$, $c = 29.4004(8)$ Å, $\beta = 96.324(2)^\circ$, $V = 2860.89(13)$ Å3, $Z = 4$, $D_c = 1.237 \text{ g cm}^{-3}$, $\mu = 0.530 \text{ mm}^{-1}$ (CuKα, $\lambda = 1.54178$), $F(000) = 1120$, $T = 173(2)$ K, $2\theta_{\text{max}} = 66.5 (97.6\%)^\circ$, 9691 measured reflections, 5039 independent reflections ($R_{\text{int}} = 0.0412$), GOF on $F^2 = 1.005$, $R_1 = 0.0723$, $wR_2 = 0.1135$ (all data), $\Delta e 0.305$ and -0.170 eÅ^{-3}.

3. Additional data

Fig. S1 Tilted angle of two cofacial stacked arenes in o-TPEPh.
Fig. S2 Tilted angle of two cofacial stacked arenes in \(o\)-2-TPENp.

Fig. S3 Tilted angle of two cofacial stacked arenes in \(o\)-TPEAn.

Fig. S4 Tilted angle of two cofacial stacked arenes in \(o\)-TPEPa.

Fig. S5 Tilted angle of two cofacial stacked arenes in \(o\)-TPEPy.
Fig. S6 Molecular packing patterns of \(\sigma \)-TPEPh in the crystalline state with indicated CH–π interactions between adjacent molecules.

Fig. S7 Molecular packing patterns of \(\sigma \)-2-TPENp in the crystalline state with indicated CH–π interactions between adjacent molecules.

Fig. S8 Molecular packing patterns of \(\sigma \)-TPEAn in the crystalline state with indicated CH–π interactions between adjacent molecules.
Fig. S9 Molecular packing patterns of \(o \)-TPEPa in the crystalline state with indicated CH–\(\pi \) interactions between adjacent molecules.

Fig. S10 Molecular packing patterns of \(o \)-TPEPy in the crystalline state with indicated CH–\(\pi \) interactions between adjacent molecules.

Fig. S11 Photoluminescence (PL) spectra of \(o \)-TPEAr in (A) films, and (B) crystals, \(\lambda_{ex} = 330 \) nm.
Fig. S12 1H NMR of o-TPEPh (500 MHz, CDCl$_3$).

Fig. S13 13C NMR of o-TPEPh (125 MHz, CDCl$_3$).
Fig. S14 1H NMR of o-2-TPENp (300 MHz, CDCl$_3$).

Fig. S15 13C NMR of o-2-TPENp (75 MHz, CDCl$_3$).
Fig. S16 1H NMR of o-TPEAn (300 MHz, CDCl$_3$).

Fig. S17 13C NMR of o-TPEAn (75 MHz, CDCl$_3$).
Fig. S18 1H NMR of o-TPEPa (300 MHz, CDCl$_3$).

Fig. S19 13C NMR of o-TPEPa (75 MHz, CDCl$_3$).
Fig. S20 1H NMR of o-TPEPy (300 MHz, CDCl$_3$).

Fig. S21 13C NMR of o-TPEPy (75 MHz, CDCl$_3$).

4. Reference