A Highly Efficient Synthesis of the DEFG-Ring System of Rubriflordilactone B

Yong Wang, Yuhan Zhang, Zhongle Li, Zhenjie Yang, and Zhixiang Xie*

State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

*E-mail: xiezx@lzu.edu.cn.

Table of Contents

1. General information S1

2. 1H and 13C NMR spectra of new compounds S2—S11

1. **General information:** Oxygen- and moisture-sensitive reactions were carried out under argon atmosphere. Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used without further purification unless otherwise noted. Column chromatography was performed on silica gel (200-300 mesh). NMR spectra were recorded on Bruker 400 MHz and Oxford 600 MHz spectrometers in the CDCl$_3$ or acetone d$_6$. Chemical shifts are reported as δ values relative to internal chloroform (δ 7.27 for 1H NMR and 77.00 for 13C NMR) and acetone-d$_6$ (δ 2.05 for 1H NMR and 29.92 for 13C NMR). High resolution mass spectra (HRMS) were obtained on a 4G mass spectrometer by using electrospray ionization (ESI) analyzed by quadrupole time-of-flight (Q-TOF). Optical rotations were measured on a Rudolph Autoplo IV polarimeter.
2. 1H and 13C NMR spectra of new compounds

1H and 13C NMR spectra of compound 6:
1H and 13C NMR spectra of compound 5:
1H and 13C NMR spectra of compound 4:
1H and 13C NMR spectra of compound 13:
1H and 13C NMR spectra of compounds 13 and 13':

400 MHz, CDCl$_3$
NOE of compound 13:
1H and 13C NMR spectra and NOE of compound 14:
1H and 13C NMR spectra and NOE of compound 16: