Electronic Supplementary Information

Supramolecular radical polymers self-assembled from the stacking of radical cations of rod-like viologen di- and trimers

Tian-Guang Zhan, Tian-You Zhou, Feng Lin, Liang Zhang, Cen Zhou, Qiao-Yan Qi, Zhan-Ting Li, and Xin Zhao

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China. E-mail: xzhao@mail.sioc.ac.cn

Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.

College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China.

Table of Contents

Section 1: Materials and General Methods ... 3

Section 2: Synthesis and Characterizations .. 4

Figure S1 CV of the COVs in CH$_3$CN ... 8

Figure S2 CV of the COVs in H$_2$O .. 8

Figure S3 Normalized UV and FL spectra of MV .. 9

Figure S4 UV-vis dilution spectra of the COVs in CH$_3$CN .. 9

Figure S5 UV-vis dilution spectra of the COVs in H$_2$O .. 10

Figure S6 Normalized UV and FL spectra of the COVs ... 10

Table S1 Summary of Optical and Electrochemical Properties of the COVs 11

Figure S7 Optimized structures of the COVs .. 11

Figure S8 ESP map of the COVs ... 12

Figure S9 Spin states of the COV radical cations .. 12

Figure S10 UV-vis-NIR spectra of the COV radical cations 13

Figure S11 Solution color pictures of the COVs and their radical cations 13

Figure S12 Temperature-varied UV-vis-NIR spectra of the COV radical cations 14

Figure S13 UV-vis-NIR spectra of the PV2 radical cations in mixed solvents 14
Figure S14 UV-vis-NIR spectra of the PV3 radical cations in mixed solvents15

Figure S15 UV-vis-NIR spectra of the BPV2 radical cations in mixed solvents15

Figure S16 UV-vis-NIR spectra of the BPV3 radical cations in mixed solvents16

Figure S17 UV-vis-NIR dilution spectra of the COV radical cations in water17

Figure S18 UV-vis-NIR dilution spectra of the COV radical cations with CB[8] in water18

Table S2 Summary of the apparent binding constants ...19

Figure S19 UV-vis-NIR titration spectra of the COV radical cations with CB[8]19

Figure S20 Job’s plots of the COV radical cations with CB[8] ...20

Figure S21 DLS plots of the COV and their radical cations with CB[8] ...20

Figure S22 Variable-temperature EPR spectra of the COV radical cations ...21

Figure S23 Variable-temperature EPR spectra of the COV radical cations with CB[8]21

Figure S24 Cryo-TEM images of the COV radical cations supramolecular polymers22

Figure S25-34 1H NMR and 13C NMR of the intermediates and COVs ...23-32

References ...33
Section 1: Materials and General Methods

All reagents were purchased from commercial suppliers and used without further purification unless stated otherwise. Zincke salts 1 and 2 were synthesized according to the literatures\(^1\). \(^1\)H NMR spectra were recorded on a Bruker Avance DMX 400 spectrometer and \(^13\)C NMR spectra were recorded on a 500 MHz Agilent spectrometer at 25\(^\circ\)C.

Cyclic Voltammetry: Experiments were performed with a CHI-660D electrochemical working station and saturated calomel electrode (SCE) was used as reference electrode, 0.1 M \(\text{Bu}_4\text{PF}_6\) in CH\(_3\)CN and 0.1 M KCl in H\(_2\)O were used as electrolyte, respectively, and the sample solution was degassed by argon bubbling for two minutes before CV scanning.

UV-Vis and UV-Vis-NIR spectroscopy: absorption spectra for the COV compounds were recorded with a Unico 4802 UV-vis double beam spectrophotometer; and the absorption spectra for the COV radical cations were recorded with a Perlom Elmer Lambda 750S UV-Vis /NIR Spectrophotometer (PerkinElmer, USA).

Fluorescence spectroscopy: spectra were recorded with an F-4600 FL spectrophotometer at 25 \(^\circ\)C in CH\(_3\)CN and H\(_2\)O, respectively.

DFT calculation: Optimized structures and the FMOs of the COVs and their corresponding radical cations were performed with the Gaussian 09 package at the B3LYP/6-31G (d) level without consideration of solvation; the model superstructure for (MV\(^{4+}\))\(_2\subset\text{CB}[8]\) was carried out at the m06/6-31g (d, p) level and the optimized superstructure of [(PV\(^2\))\(^{4+}\)]\(_2\subset\text{CB}[8]\) was generated by semi-empirical/upm6 calculation.

Cryo-TEM experiments: samples were prepared by carefully dropping the corresponding solution of an as-prepared radical cation solution onto the carbon coated copper grid, which were quickly frozen in liquid propane, and then submit on a FEI 120kV Tecnai T12 transmission electron microscope for observation;

EPR spectroscopy: samples were prepared by carefully injecting the corresponding solution of an as-prepared radical cation solution into a capillaron, and then submitted to an electron paramagnetic resonance spectrometer.
Section 2: Synthesis and Characterizations

Compound 3: Compound 1 (5.4 g, 15 mmol) and benzene-1,4-diamine (0.54 g, 5 mmol) were dissolved in ethanol (80 mL). The mixture was heated under reflux for 48 h. The hot mixture was filtered and the filtered cake was washed by acetone (2 × 80 mL). The resulting gray solid was recrystallized from CH$_3$OH/THF. Compound 3 was obtained as a brown solid (0.15 g, 15%). 1H NMR (400 MHz, CD$_3$CN): δ (ppm) 9.10 (d, J = 6.8 Hz, 4 H), 8.93 (d, J = 6.0 Hz, 4 H), 8.58 (d, J = 6.4 Hz, 4 H), 8.12 (s, 4 H), 7.92 (d, J = 6.0 Hz, 4 H). 13C NMR (125 MHz, CD$_3$CN) was obtained from its hexafluorophosphate salt: 152.96, 151.78, 151.01, 150.96, 150.04, 150.01, 144.71, 142.86, 140.76, 131.61, 126.66, 125.85, 124.99, 123.76, 122.52, 121.91, 121.04, 117.02, 115.06, and 113.53. MS (ESI): m/z 194.1 [M-2Cl]$^{2+}$. HRMS (MALDI-TOF) Calcd. for C$_{26}$H$_{20}$N$_4$ 388.17 [M-2PF$_6$]$^+$, Found: C$_{26}$H$_{19}$N$_4$ 387.1604 [M-2PF$_6$]$^+$.

Compound 4: Compound 1 (3.64 g, 10 mmol) and benzene-1,4-diamine (3.26 g, 30 mmol) were dissolved in anhydrous ethanol (100 mL). The mixture was heated under reflux for 12 h. The hot mixture was filtered and the filtered cake was washed with acetone (300 mL). The resulting brownish red solid was redissolved in a minimum amount of methanol with heating and reprecipitated by the addition of THF. The precipitate was collected and then dried under vacuum to give compound 4 (2.75 g, 97%). 1HNMR (400 MHz, DMSO-d$_6$): δ (ppm) 9.35 (d, J = 7.2 Hz, 2 H), 8.88 (d, J = 6.4 Hz, 2 H), 8.67 (d, J = 6.4 Hz, 2 H), 8.12-8.11 (dd, J$_1$= 4.4 Hz, J$_2$= 1.2 Hz, 2 H), 7.56 (d, J = 8.8 Hz, 2 H), 6.68 (d, J = 8.8 Hz, 2 H), 6.00 (s, 2 H). 13CNMR (125 MHz, CD$_3$CN) was obtained from its hexafluorophosphate salt: 154.22, 152.26, 152.14, 145.05, 142.02, 126.69, 126.07, 122.72, 118.26 and 115.54. MS (ESI): m/z 248.0 [M-Cl]$^+$. HRMS (ESI) Calcd. for C$_{16}$H$_{14}$N$_3$ [M-Cl]: 248.1185. Found: 248.1182.

Compound 5: A suspension of compound 4 (0.45 g, 0.81 mmol) and compound 2 (0.576 g, 2.0 mmol) in anhydrous ethanol (60 mL) were heated under reflux for 84 h. After being cooling down to room temperature, the resulting solid was filtrated and recrystallized from CH$_3$OH / THF. The gray solid was collected, washed with acetone and dried to offer compound 5 (0.31 g, 50%). 1HNMR (400 MHz, D$_2$O): 9.61 (d, J =
6.4 Hz, 4 H), 9.41 (d, J = 6.8 Hz, 4 H), 8.95 (d, J = 6.4 Hz, 4 H), 8.89 (d, J = 5.2 Hz, 4 H), 8.71 (d, J = 6.4 Hz, 4 H), 8.29 (d, J = 3.6 Hz, 8 H), 8.12 (d, J = 5.6 Hz, 4 H).

13CNMR (125 MHz, D$_2$O): 164.69, 155.63, 151.36, 149.93, 145.86, 144.98, 144.52, 144.12, 144.11, 142.46, 127.52, 126.91, 126.31 and 122.79. MS (ESI): m/z 206.5 [M-4Cl]$^{3+}$. HRMS (MALDI-TOF) was obtained from its hexafluorophosphate salt: Calcd. for C$_4$H$_3$N$_3$+[M-4PF$_6$]; 620.2689. Found: 620.2683.

Compound 6: Compound 1 (1.95 g, 5.5 mmol) and benzidine (0.3 g, 1.6 mmol) were dissolved in anhydrous ethanol (120 mL). The mixture was heated under reflux for 12 h. After being cooling down to room temperature, the precipitates were filtrated and washed by another 2 × 100 mL acetone. Then, the resulting solid was dissolved in 100 mL CH$_3$OH, to which excess NH$_4$PF$_6$ was added and stirred at room temperature for 6 h. Compound 6 was obtained by filtrated and dried (0.905 g, 75%). 1H NMR (400 MHz, DMSO-d_6): δ (ppm) 9.58 (d, J = 6.8 Hz, 4 H), 8.93 (d, J = 6.0 Hz, 4 H), 8.84 (d, J = 6.8 Hz, 4 H), 8.25 (dd, J = 8.8 Hz, 4 H), 8.18 (d, J = 4.2 Hz, 4 H), 8.12 (d, J = 8.4 Hz, 4 H). 13C NMR (125 MHz, DMSO-d_6): 153.42, 152.05, 150.29, 146.45, 145.53, 145.23, 144.35, 142.28, 140.87, 140.63, 129.92, 128.83, 128.63, 127.52, 126.91, 126.19, 125.76, 125.49, 124.51, 123.31, 122.21, and 120.94. MS (ESI): m/z 232.1 [M-2Cl]$^{3+}$. HRMS (MALDI-TOF) Calcd. for C$_3$H$_2$N$_4$ 464.20 [M-2PF$_6$]$^{+}$, Found: C$_3$H$_2$N$_4$ 463.1917 [M-2PF$_6$]$^{+}$.

Compound 7: Compound 1 (3.62 g, 10 mmol) and benzidine (7.61 g, 40 mmol) were dissolved in anhydrous ethanol (350 mL). The mixture was heated under reflux for 12 h. The red precipitates were filtrated by hot and washed by another 3 × 100 mL acetone, the resulting solid was filtrated and recrystallized from CH$_3$OH / THF. Compound 7 was obtained as a red solid (2.82 g, 80%). 1H NMR (400 MHz, CD$_3$CN): δ (ppm) 9.07 (d, J = 6.8 Hz, 2 H), 8.87 (d, J = 6.0 Hz, 2 H), 8.48 (d, J = 6.8 Hz, 2 H), 7.90 (t, J = 8.8 Hz, 2 H), 7.74 (d, J = 8.8 Hz, 4 H), 7.53 (d, J = 8.8 Hz, 2 H), 6.77 (d, J = 8.8 Hz, 2 H). 13CNMR (125 MHz, CD$_3$CN) was obtained from its hexafluorophosphate salt: 152.83, 151.09, 149.59, 144.99, 143.48, 140.61, 139.72, 127.72, 126.36, 125.25, 124.95, 124.80, 122.00, 121.89, and 114.24. MS (ESI): m/z 324.1 [M-Cl]$^{+}$. HRMS (ESI) Calcd. for C$_{22}$H$_{18}$N$_3$ 324.15 [M-Cl]$^{+}$, Found: C$_{22}$H$_{18}$N$_3$
324.14952 [M-Cl]^+.

Compound 8: Compound 2 (0.28 g, 0.5 mmol) and Compound 7 (0.41 g, 1.14 mmol) were dissolved in anhydrous ethanol (50 mL). The mixture was heated under reflux for 72 h. The precipitates were filtrated and washed by another 100 mL acetone, the resulting solid was filtrated and recrystallized from CH$_3$OH / THF. Compound 8 was obtained as a yellowish green solid (0.34 g, 90%). 1HNMR (400 MHz, CD$_3$OD): δ (ppm) 9.70 (d, J = 6.4 Hz, 4 H), 9.49 (d, J = 6.8 Hz, 4 H), 9.02 (d, J = 6.4 Hz, 4 H), 8.95 (d, J = 5.6 Hz, 4 H), 8.77 (d, J = 6.8 Hz, 4 H), 8.26 (t, J = 8.0 Hz, 8 H), 8.17 (d, J = 6.8 Hz, 8 H), 8.11 (d, J = 8.4 Hz, 4 H). 13CNMR (125 MHz, DMSO-d$_6$) was obtained from its hexafluorophosphate salt: 153.43, 151.17, 149.07, 145.95, 145.39, 142.30, 140.60, 128.72, 126.68, 125.68, 125.32, and 122.09. MS (ESI): m/z 257.4 [M-4Cl]$^{3+}$. HRMS (MALDI-TOF) Calcd. for C$_{54}$H$_{40}$N$_6$ 772.33 [M-4PF$_6$]$^+$, Found: C$_{54}$H$_{40}$N$_6$ 772.3309 [M-4PF$_6$]$^+$.

Compound PV2: 0.233g (0.5mmol) compound 3, 1 mL CH$_3$I and 60 mL anhydrous CH$_3$CN were added in a sealed tube, which was heated to reflux for 12h. after cooling to room temperature, the precipitates were filtrated and washed with 3 \times 50 mL acetone. The resulting red solid was collected and dissolved in 10 mL H$_2$O, and 0.6 g NH$_4$PF$_6$ was added. The suspension was stirred for another 6 h, precipitates were filtrated and dried. PV2(4PF$_6$) was obtained as brown solid (0.34 g, 70%). 1H NMR (400 MHz, CD$_3$CN): δ (ppm) 9.28 (d, J = 6.8 Hz, 4 H), 8.95 (d, J = 6.4 Hz, 4 H), 8.67 (d, J = 6.8 Hz, 4 H), 8.51 (d, J = 6.0 Hz, 4 H), 8.18 (s, 4 H), 4.46 (s, 6 H). 13C NMR (125 MHz, CD$_3$CN): 152.47, 149.95, 147.44, 146.81, 145.22, 128.51, 128.25, 128.00, 127.96, 127.82, and 49.45. HRMS (MALDI-TOF) Calcd. for C$_{28}$H$_{26}$N$_4$ 418.21 [M-4PF$_6$]$^+$, Found: C$_{28}$H$_{26}$N$_4$ 418.2152 [M-4PF$_6$]$^+$.

Compound PV3: The synthesis procedure was similar to PV2, and Compound PV3(6PF$_6$) was obtained as dark brown solid in a yield of 80%. 1H NMR (400 MHz, CD$_3$CN): δ (ppm) 9.34 (d, J = 6.4 Hz, 4 H), 9.29 (d, J = 6.4 Hz, 4 H), 8.96 (d, J = 7.2 Hz, 4 H), 8.79 (d, J = 6.4 Hz, 4 H), 8.68 (d, J = 6.8 Hz, 4 H), 8.52 (d, J = 6.4 Hz, 4 H), 8.21 (s, 8 H), 4.46 (s, 6 H). 13C NMR (125 MHz, CD$_3$CN): 151.73, 151.24, 149.18, 146.66, 146.04, 145.88, 144.52, 127.77, 127.51, 127.26, 127.08, and 48.73. HRMS
(MALDI-TOF) Calcd. for C_{44}H_{38}N_{6} 650.3158 [M-6PF_{6}]^+, Found: C_{44}H_{38}N_{6} 650.3153 [M-6PF_{6}]^+.

Compound BPV2: The synthesis procedure was similar to **PV2**, and **Compound BPV2(4PF_{6})** was obtained as earthy yellow solid in a yield of 90%. 1H NMR (400 MHz, CD$_3$CN): δ (ppm) 9.26 (d, J = 6.4 Hz, 4 H), 8.94 (d, J = 6.0 Hz, 4 H), 8.63 (d, J = 6.4 Hz, 4 H), 8.50 (d, J = 6.0 Hz, 4 H), 8.16 (d, J = 8.0 Hz, 4 H), 7.97 (d, J = 8.4 Hz, 4 H), 4.48 (s, 6 H). 13C NMR (125 MHz, CD$_3$CN): 150.86, 149.32, 146.62, 145.56, 142.39, 142.15, 129.52, 127.29, 126.97, 125.31, and 48.65. HRMS (MALDI-TOF) Calcd. for C$_{34}$H$_{30}$N$_{4}$ 494.24 [M-4PF$_{6}$]$^+$, Found: C$_{34}$H$_{30}$N$_{4}$ 494.2465 [M-4PF$_{6}$]$^+$.

Compound BPV3: The synthesis procedure was similar to **Compound PV2**, and **BPV3(6PF$_{6}$)** was obtained as brown solid in a yield of 90%. 1H NMR (400MHz, CD$_3$CN): δ (ppm) 9.30 (d, J = 6.4 Hz, 4 H), 9.25 (d, J = 6.4 Hz, 4 H), 8.91 (d, J = 6.4 Hz, 4 H), 8.74 (d, J = 6.0 Hz, 4 H), 8.63 (d, J = 6.4 Hz, 4 H), 8.49 (d, J = 6.4 Hz, 4 H), 8.18 (t, J = 8.4 Hz, 8 H), 7.99 (t, J = 18.4 Hz, 8 H), 4.45 (s, 6 H). 13C NMR (100MHz, CD$_3$CN): 150.89, 150.56, 149.33, 146.61, 145.69, 145.58, 142.43, 142.40, 142.24, 142.19, 129.58, 129.56, 127.49, 127.31, 127.01, 125.36, 125.33, and 48.69. HRMS (MALDI-TOF) Calcd. for C$_{56}$H$_{46}$N$_{6}$ 802.38 [M-6PF$_{6}$]$^+$, Found: C$_{56}$H$_{46}$N$_{6}$ 802.3770 [M-6PF$_{6}$]$^+$.

The chloride salts of the COVs were prepared by anion exchange of their hexafluorophosphate (PF$_{6}$) salts with TBACl. A typical procedure is described as follows. The PF$_{6}$ salt of a COV was dissolved in a minimum amount of CH$_3$NO$_2$. Excess tetrabutylammonium chloride (TBACl) was added and the resulting suspension was then stirred at room temperature for 2 hours. The precipitate was collected and washed by acetone and dried under vacuum to afforded chloride salt of the COV as a brown solid.
Figure S1. Cyclic voltammograms (vs SCE) of (a) PV2, (b) PV3, (c) BPV2, and (d) BPV3 recorded at a variety of scan rate from 0.01 V/S to 0.3 V/S in CH3CN at 25 °C. The concentrations of the COV samples and electrolyte were 1.0 mM and 0.1 M, respectively.

Figure S2. Cyclic voltammograms (vs SCE) of (a) PV2, (b) PV3, (c) BPV2 and (d) BPV3 in H2O recorded at a variety of scan rate from 0.01 V/S to 0.3V/S at 25 ºC. The concentrations of the COV samples and electrolyte were 1.0 mM and 0.1 M, respectively.
Figure S3. (a) Normalized Uv-vis spectra of MV (0.01 mM) in CH₃CN and H₂O at 25 °C, respectively. (b) Fluorescence spectra of MV (0.01 mM) (λex = 260 nm) in CH₃CN and H₂O at 25 °C, respectively.

Figure S4. UV-vis dilution spectra of (a) PV2 (0.005 to 0.05 mM), (b) PV3 (0.0025 to 0.025 mM), (c) BPV2 (0.005 to 0.0275 mM) and (d) BPV3 (0.00125 to 0.0125 mM) in CH₃CN at 20 °C. Inset: absorbance at λmax vs concentration plot.
Figure S5. UV-vis absorption spectra of (a) PV2 (0.0025 to 0.03 mM), (b) PV3 (0.0025 to 0.025 mM), (c) BPV2 (0.0025 to 0.03 mM) and (d) BPV3 (0.0025 to 0.025 mM) in H₂O at 20 °C. Inset: absorbance at \(\lambda_{\text{max}}\) vs concentration plot.

Figure S6. (a) Normalized Uv-vis absorption spectra of PV2, PV3, BPV2 and BPV3 in H₂O at 20 °C and (b) Fluorescence spectra of PV2, PV3, BPV2 and BPV3 (\(\lambda_{\text{ex}} = 290\) nm) at 25 °C in H₂O. The concentration was 5.0 × 10⁻⁶ M.
Table S1 Summary of Optical and Electrochemical Properties of the COVs in CH$_3$CN and (H$_2$O).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>$\lambda_{\text{max}}^{\text{abs}}$/nm</th>
<th>$\lambda_{\text{max}}^{\text{em}}$/nm</th>
<th>$\varepsilon \times 10^4$/M$^{-1}$cm$^{-1}$</th>
<th>$E_{1/2}^{\text{red}}$/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV</td>
<td>260 (258)</td>
<td>345 (/)</td>
<td>2.08 (2.53)</td>
<td>-0.42 (-0.66)</td>
</tr>
<tr>
<td>PV2</td>
<td>287 (289)</td>
<td>436 (/)</td>
<td>3.50 (3.48)</td>
<td>-0.23 (-0.39)</td>
</tr>
<tr>
<td>PV3</td>
<td>292 (294)</td>
<td>454 (/)</td>
<td>4.17 (5.00)</td>
<td>-0.21 (-0.32)</td>
</tr>
<tr>
<td>BPV2</td>
<td>348 (349)</td>
<td>550 (/)</td>
<td>5.60 (3.92)</td>
<td>-0.28 (-0.39)</td>
</tr>
<tr>
<td>BPV3</td>
<td>348 (351)</td>
<td>560 (/)</td>
<td>8.16 (5.50)</td>
<td>-0.14 (-0.18)</td>
</tr>
</tbody>
</table>

Figure S7. Optimized structures of (a) PV2, PV3, BPV2 and BPV3, and (b) (PV2)$^{2-4}$, (PV3)$^{3-4}$, (BPV2)$^{2-4}$ and (BPV3)$^{3-4}$ by DFT calculations at B3LYP/6-31G(d) level.
Figure S8. The electron spin polarization (ESP) map [kcal mol\(^{-1}\)] of the conjugated oligomeric viologens.

Figure S9. Spin states of the COV radical cations.
Figure S10. UV-vis-NIR spectra of (a) PV3, (b) BPV2 and (c) BPV3 before and after reduced by 0.05 M Na$_2$S$_2$O$_3$ in H$_2$O (pH = 7) at 20 °C.

Figure S11. Solution color pictures of PV2, PV3, BPV2 and BPV3 (a) in H$_2$O; (b) reduced by excess Na$_2$S$_2$O$_3$; (c) with 1.0 eq CB[8] in H$_2$O and (d) solution (c) reduced by excess Na$_2$S$_2$O$_3$. The concentration was 0.1 mM at 20 °C.
Figure S12. UV-vis-NIR titration spectra of (a) PV2, (b) PV3, (c) BPV2 and (d) BPV3 after being reduced by sodium hydrosulfite (0.05 M) at 60 °C in water (pH = 7).

Figure S13. UV-vis-NIR spectra of PV2 in water with different amount of organic solvents at a concentration of 1×10^{-5} M, a) CH$_3$CN, b) DMSO, c) MeOH and d) THF (pH = 7) after being reduced by sodium hydrosulfite (0.05 M) at 20 °C.
Figure S14. UV-vis-NIR spectra of PV3 in water with different amount of organic solvents at a concentration of 1×10^{-5} M, a) CH$_3$CN, b) DMSO, c) MeOH and d) THF (pH = 7) after being reduced by sodium hydrosulfite (0.05 M) at 20°C.

Figure S15. UV-vis-NIR spectra of BPV2 in water with different amount of organic solvents at a concentration of 1×10^{-5} M, a) CH$_3$CN, b) DMSO, c) MeOH and d) THF (pH = 7) after reduced by sodium hydrosulfite (0.05 M) at 20°C.
Figure S16. UV-vis-NIR spectra of BPV3 in water with different amount of organic solvents at a concentration of 1×10^{-5} M, a) CH$_3$CN, b) DMSO, c) MeOH and d) THF (pH = 7) after reduced by sodium hydrosulfite (0.05 M) at 20 °C.
Figure S17. a) UV-vis-NIR dilution spectra of (PV2)$^{2+}$ (0 to 0.12 mM) and b) molar absorption coefficient plot of (PV2)$^{2+}$ at 1080 nm; c) UV dilution spectra of (BPV2)$^{2+}$ (0 to 0.30 mM) and d) molar absorption coefficient plot of (BPV2)$^{2+}$ at 1060 nm; e) UV dilution spectra of (PV3)$^{3+}$ (0 to 0.10 mM) and f) molar absorption coefficient plot of (PV3)$^{3+}$ at 1090 nm; g) UV dilution spectra of (BPV3)$^{3+}$ (0 to 0.10 mM) and h) molar absorption coefficient plot of (BPV3)$^{3+}$ at 1100 nm.
Figure S18. a) UV-vis-NIR dilution spectra of (PV2)2+ with 1.0 equiv. CB[8] (0 to 0.026 mM) and b) Molar absorption coefficient plot of (PV2)2+ with 1.0 equiv. CB[8] at 900 nm; c) UV dilution spectra of (BPV2)2+ (0 to 0.015 mM) and d) molar absorption coefficient plot of (BPV2)2+ with 1.0 equiv. CB[8] at 900 nm; e) UV dilution spectra of (PV3)3+ (0 to 0.015 mM) and f) molar absorption coefficient plot of (PV3)3+ with 1.0 equiv. CB[8] at 900 nm; g) UV dilution spectra of (BPV3)3+ (0 to 0.015 mM) and h) molar absorption coefficient plot of (BPV3)3+ with 1.0 equiv. CB[8] at 900 nm.
Table S2 Summary of the apparent binding constants (\(K_a\)) of the radical cations *

<table>
<thead>
<tr>
<th>Compound</th>
<th>(MV)**</th>
<th>(PV3)**</th>
<th>(BPV2)**</th>
<th>(PV3)**</th>
<th>(BPV3)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>without CB[8]</td>
<td>((3.80 \pm 8.40) \times 10^3)</td>
<td>((3.85 \pm 0.48) \times 10^4)</td>
<td>((1.13 \pm 0.17) \times 10^5)</td>
<td>((1.43 \pm 0.23) \times 10^5)</td>
<td></td>
</tr>
<tr>
<td>with 1.0 eq CB[8]</td>
<td>((2.0 \times 10^3)^b)</td>
<td>((1.94 \pm 0.33) \times 10^5)</td>
<td>((3.95 \pm 0.35) \times 10^5)</td>
<td>((1.16 \pm 0.072) \times 10^5)</td>
<td>((1.81 \pm 0.29) \times 10^5)</td>
</tr>
</tbody>
</table>

* in sodium phosphate buffer (pH = 7.0) of aqueous binary media with the presence of excess sodium dithionite (0.05M), ref2.

b dimerization constants for (MV**)_2 < CB[8], ref3.

Figure S19. Uv-vis-NIR titration spectra of (a) PV3, (b) BPV2 and (c) BPV3 with CB[8] (from 0.1 to 1.5 eq) at 20°C in the presence of 0.05 M sodium hydrosulfite. The concentration of conjugated radical cation was \(2.5 \times 10^{-5}\) M in H_{2}O.
Figure S20. Job’s plots of (a) PV3, (b) BPV2 and (c) BPV3 with CB[8] in the presence of 0.05 M sodium hydrosulfite at 20 °C. The concentration of conjugated radical cation was 2.5×10^{-5} M in H$_2$O.

Figure S21. DLS plots of (a) 0.05 mM PV3, (0.05 mM PV3 + 1.0 eq CB[8]), (0.05 mM PV3 + 0.05 M Na$_2$S$_2$O$_3$) and (0.05 mM PV3 + 1.0 eq CB[8] + 0.05 M Na$_2$S$_2$O$_3$) respectively; (b) 0.05 mM BPV2, (0.05 mM BPV2 + 1.0 eq CB[8]), (0.05 mM BPV2 + 0.05 M Na$_2$S$_2$O$_3$) and (0.05 mM BPV2 + 1.0 eq CB[8] + 0.05 M Na$_2$S$_2$O$_3$) respectively and (c) 0.05 mM BPV3, (0.05 mM BPV3 + 1.0 eq CB[8]), (0.05 mM BPV3 + 0.05 M Na$_2$S$_2$O$_3$) and (0.05 mM BPV3 + 1.0 eq CB[8] + 0.05 M Na$_2$S$_2$O$_3$) respectively at 20 °C.
Figure S22. EPR spectra of (a) PV2; (b) PV3; (c) BPV2 and (b) BPV3 at different temperatures in H2O (pH = 7) with 0.05 M Na2S2O3. The concentration was 0.1mM.

Figure S23. EPR spectra of (a) PV2 + 1.0 eq CB[8]; (b) PV3 + 1.0 eq CB[8]; (c) BPV2 + 1.0 eq CB[8] and (d) BPV3 + 1.0 eq CB[8] at different temperatures in H2O (pH = 7) with 0.05 M Na2S2O3. The concentration was 0.1 nM.
Figure S24. Cryo-TEM images of (a) (PV3)$^{3+}$; (b) (BPV2)$^{2+}$; (c) (BPV3)$^{3+}$; (d) (PV3)$^{3+}$ + 1.0 eq CB[8]; (e) (BPV2)$^{2+}$ + 1.0 eq CB[8] and (f) (BPV3)$^{3+}$ + 1.0 eq CB[8]. The concentration was 0.025 mM and the scale bar was 100 nm.
Figure S25. 1H NMR (400 MHz, CD$_3$CN) and 13C NMR (125 MHz, CD$_3$CN) spectra of compound 3.
Figure S26. 1H NMR (400 MHz, DMSO-d_6) and 13C NMR (125 MHz, CD$_3$CN) spectra of compound 4 at 25 °C.
Figure S27. 1H NMR (400 MHz, D$_2$O) and 13C NMR (125 MHz, D$_2$O) spectra of compound 5 at 25 °C.
Figure S28. 1H NMR (400 MHz, DMSO-d_6) and 13C NMR (125 MHz, DMSO-d_6) spectra of compound 6 at 25 °C.
Figure S29. 1H NMR (400 MHz, CD$_3$CN) and 13C NMR (125 MHz, DMSO-d_6) spectra of compound 7 at 25 °C.
Figure S30. 1H NMR (400 MHz, CD$_3$OD) and 13C NMR (125 MHz, DMSO-d_6) spectra of compound 8 at 25 °C.
Figure S31. 1H NMR (400 MHz, CD$_3$CN) and 13C NMR (125 MHz, CD$_3$CN) spectra of PV2 at 25 °C.
Figure S32. 1H NMR (400 MHz, CD$_3$CN) and 13C NMR (125 MHz, CD$_3$CN) spectra of PV3 at 25 °C.
Figure S33. 1H NMR (400 MHz, CD$_3$CN) and 13C NMR (125 MHz, CD$_3$CN) spectra of BPV2 at 25 °C.
Figure S34. 1H NMR (400 MHz, CD$_3$CN) and 13C NMR (125 MHz, CD$_3$CN) spectra of BPV3 at 25 °C.
References