Nickel-Catalyzed Alkyl-Zincation and Carboxylation of Diynes

Tao Cao^{*a*} and Shengming Ma^{**a,b*}

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic

Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China

^b Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China

Email: masm@ sioc.ac.cn

Fax: 86-21-64167510

Supporting Information

Index

1.	Experimental details and Analytical Data for Compounds	S2
2.	References	S39
3.	¹ H NMR and ¹³ C NMR Spectra of Products	S40

General Information: All reactions were carried out in oven dried Schlenk tubes. Ni(cod)₂ was purchased from Strem Chemicals and kept in a glove box at -30 °C. ZnMe₂ was purchased from J&K Scientific. ZnEt₂ was purchased from Acros. ZnⁿBu₂ was purchased from Energy Chemical. DMSO was dried over calcium hydride before distillation. Toluene was dried over sodium before distillation. Other reagents were used without further treatment. All the temperatures are referred to the oil baths used.

Pioneering reports on alkyl-carboxylations:

Scheme S1

1. Preparation of starting materials.

The starting materials were synthesized via Sonogashira reactions of aryl iodides with corresponding terminal alkynes.¹ The starting material **1a'** was prepared according to literature.²

(1) Preparation of **1a** (ct-8-127)

Typical procedure A: Under Ar atmosphere, to a 50 mL three-neck flask were added $Pd(PPh_3)_2Cl_2$ (0.0697)0.1 mmol). dimethyl g, 2-(2-butynyl)-2-(2-propynyl)malonate (2.1528 g, 9.7 mmol), methyl 2-iodobenzoate (2.6412 g, 10 mmol), and 30 mL of NEt₃ sequentially. After being stirred for 5 min at room temperature, to this resulting mixture was added CuI (0.0185 g, 0.1 mmol). After being stirred at room temperature for 11 h, the reaction was complete as monitored by TLC. The mixture was filtered and eluted with 30 mL of ethyl acetate. The mixture was concentrated in vacuo. 1a (3.1867 g, 92%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 7/1) as a solid: m.p. 42-44 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.6 Hz, 1 H, ArH), 7.49 (d, J = 7.6 Hz, 1 H, ArH), 7.42 (t, J = 7.4 Hz, 1 H, ArH), 7.33 (t, J = 7.4 Hz, 1 H, ArH), 3.93 (s, 3 H, OCH₃), 3.78 (s, 6 H, OCH₃ × 2), 3.27 (s, 2 H, CH₂), 3.04 (s, 2 H, CH₂), 1.77 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 166.6, 134.5, 131.9, 131.4, 130.0, 127.6, 123.4, 89.3, 82.0, 79.1, 73.0, 57.0, 52.9, 52.1, 23.8, 23.1, 3.5; MS (ESI) 374 ($[M+NH_4]^+$), 357 ($[M+H]^+$); IR (neat, cm⁻¹) 1726, 1595, 1568, 1487, 1435, 1327, 1289, 1256, 1212, 1193, 1136, 1076, 1051; Anal. calcd for C₂₀H₂₀O₆ (%): C 67.41, H 5.66; found: C 67.37, H 5.57.

(2) Preparation of **1b** (ct-7-67)

Following **Typical Procedure** the reaction of dimethyl Α, 2-(2-butynyl)-2-(2-propynyl)malonate (1.8019)8.1 mmol), methyl g, 2-iodo-5-methoxybenzoate (2.6179 g, 9.0 mmol), Pd(PPh₃)₂Cl₂ (0.0547 g, 0.08 mmol), CuI (0.0151 g, 0.08 mmol) in 20 mL of NEt₃ for 15.8 h afforded **1b** (3.0940 g, 99%) via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 5/1) as a solid: m.p. 74-75 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.4 Hz, 1 H, ArH), 7.38 (d, J = 2.8 Hz, 1 H, ArH), 6.96 (dd, J = 8.8, 2.8 Hz, 1 H, ArH), 3.93 (s, 3 H, OCH₃), 3.83 (s, 3 H, OCH₃), 3.77 (s, 6 H, OCH₃ × 2), 3.25 (s, 2 H, CH₂), 3.03 (q, J = 2.4 Hz, 2 H, CH₂), 1.77 (t, J = 2.4 Hz, 3 H, CH₃); ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 169.5, 166.5, 158.7, 135.7, 133.1, 118.0, 115.5, 114.5, 87.2, 81.8, 79.1, 73.0, 57.0, 55.4, 52.9, 52.2, 23.8, 23.0, 3.4; MS (ESI) 409 ([M+Na]⁺), $404 ([M+NH_4]^+)$, 387 ($[M+H]^+$); IR (neat, cm⁻¹) 1734, 1701, 1603, 1496, 1431, 1320, 1287, 1217, 1148, 1128, 1079, 1036; Anal. calcd for C₂₁H₂₂O₇ (%): C 65.28, H 5.74; found: C 64.96, H 5.65.

(3) Preparation of 1c (ct-6-47)

Following **Typical Procedure A**, the reaction of *N*-(2-butynyl)-*N*-(2-propynyl)-*p*-toluenesulfonamide (2.5412 g, 9.7 mmol), methyl 2-iodobenzoate (2.6068 g, 9.9 mmol), Pd(PPh₃)₂Cl₂ (0.0712 g, 0.1 mmol), CuI (0.0194 g, 0.1 mmol) in 20 mL of NEt₃ for 10 h afforded **1c** (3.7065 g, 96%) via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 7/1 to petroleum ether/ ethyl acetate/dichloromethane = 5/1/1) as a solid: m.p. 84-85 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.6 Hz, 1

H, ArH), 7.74 (d, J = 8.4 Hz, 2 H, ArH), 7.41 (t, J = 7.2 Hz, 1 H, ArH), 7.34 (t, J = 7.4 Hz, 1 H, ArH), 7.24 (d, J = 7.2 Hz, 1 H, ArH), 7.20 (d, J = 8.0 Hz, 2 H, ArH), 4.44 (s, 2 H, NCH₂), 4.23 (s, 2 H, NCH₂), 3.88 (s, 3 H, OCH₃), 2.29 (s, 3 H, CH₃), 1.67 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 143.5, 135.2, 134.0, 131.6, 131.4, 130.1, 129.2, 127.9, 127.8, 122.6, 86.9, 84.2, 81.7, 71.5, 52.0, 37.2, 36.9, 21.2, 3.3; MS (ESI) (m/z) 396 ([M+H]⁺); IR (neat, cm⁻¹) 1710, 1595, 1486, 1442, 1401, 1336, 1294, 1249, 1189, 1164, 1127, 1089, 1064, 1040; Anal. calcd for C₂₂H₂₁NO₄S (%): C 66.82, H 5.35, N 3.54; found: C 66.33, H 5.26, N 3.46.

(4) Preparation of 1d (ct-6-115)

Following **Typical Procedure A**, the reaction of 1-(2-propynyloxy)-2-butyne (2.2245 g, 20.6 mmol), methyl 2-iodobenzoate (5.1804 g, 19.8 mmol), Pd(PPh₃)₂Cl₂ (0.1402 g, 0.2 mmol), CuI (0.0382 g, 0.2 mmol) in 50 mL of NEt₃ for 12 h afforded **1d** (4.4049 g, 88%) via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 10/1) as a solid: m.p. 31-33 °C (petroleum ether/ ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, *J* = 7.8, 1.4 Hz, 1 H, ArH), 7.56 (dd, *J* = 7.6, 1.4 Hz, 1 H, ArH), 7.46 (td, *J* = 7.6, 1.3 Hz, 1 H, ArH), 7.37 (td, *J* = 7.6, 1.3 Hz, 1 H, ArH), 4.53 (s, 2 H, OCH₂), 4.34 (q, *J* = 2.3 Hz, 2 H, OCH₂), 3.92 (s, 3 H, OCH₃), 1.87 (t, *J* = 2.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 134.0, 131.7, 131.5, 130.1, 127.9, 122.8, 89.7, 85.0, 82.9, 74.3, 57.0, 56.9, 52.0, 3.4; MS (ESI) 260 ([M+NH₄]⁺), 243 ([M+H]⁺); IR (neat, cm⁻¹) 1723, 1594, 1566, 1484, 1437, 1375, 1352, 1297, 1278, 1255, 1195, 1166, 1066; Anal. calcd for C₁₅H₁₄O₃ (%): C 74.36, H 5.82; found: C 74.02, H 5.78.

(5) Preparation of 1e (ct-6-151)

Following **Typical** of **Procedure** A. the reaction dimethyl 2-(2-pentynyl)-2-(2-propynyl)malonate (1.0018 g, 4 mmol), methyl 2-iodobenzoate (1.0536 g, 4 mmol), Pd(PPh₃)₂Cl₂ (0.0266 g, 0.04 mmol), CuI (0.0154 g, 0.08 mmol) in 10 mL of NEt₃ for 12 h afforded **1e** (1.0407 g, 68%) via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 10/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 8.0, 1.2 Hz, 1 H, ArH), 7.49 (dd, J = 7.7, 1.1 Hz, 1 H, ArH), 7.42 (td, J = 7.6, 1.5 Hz, 1 H, ArH), 7.33 (td, J = 7.6, 1.4 Hz, 1 H, ArH), 3.93 (s, 3 H, OCH₃), 3.78 (s, 6 H, OCH₃ \times 2), 3.28 (s, 2 H, CH₂), 3.06 (t, J = 2.4 Hz, 2 H, CH₂), 2.11 (tt, J = 7.0, 2.4 Hz, 2 H, CH₂), 1.48 (sext, J = 7.2 Hz, 2 H, CH₂), 0.95 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 166.6, 134.4, 131.8, 131.4, 130.0, 127.6, 123.4, 89.3, 83.7, 82.0, 74.1, 57.1, 52.9, 52.1, 23.8, 23.1, 22.1, 20.5, 13.2; MS (ESI) (m/z) 402 ([M+NH₄]⁺), 385 ([M+H]⁺); IR (neat, cm⁻¹) 1734, 1596, 1568, 1485, 1434, 1380, 1328, 1291, 1251, 1201, 1130, 1079, 1052; HRMS calcd for $C_{22}H_{28}NO_6$ ([M+NH₄⁺]): 402.1911; found: 402.1912.

(6) Preparation of 1f (ct-6-164, ct-6-169)

Following **Typical Procedure A**, the reaction of dimethyl 2-(5-hydroxy-2-pentynyl)-2-(2-propynyl)malonate (3.2090 g, 12.7 mmol), methyl 2-iodobenzoate (4.5219 g, 17.3 mmol), $Pd(PPh_3)_2Cl_2$ (0.0896 g, 0.13 mmol), CuI (0.0238 g, 0.12 mmol) in 30 mL of NEt₃ for 35.5 h afforded dimethyl 2-(5-hydroxy-2-pentynyl)-2-(3-(2-(methoxycarbonyl)phenyl)-2-propynyl)malonate (3.7599 g) via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 2/1) as an oil and used directly in the next step.

To a round bottom flask were added dimethyl

2-(5-hydroxy-2-pentynyl)-2-(3-(2-(methoxycarbonyl)phenyl)-2-propynyl)malonate (2.9660 g, 7.7 mmol) prepared above, diethyl ether (20 mL), NEt₃ (1.4 mL, d = 0.73 g/mL, 1.022 g, 10.0 mmol), DMAP (93.7 mg, 0.77 mmol), and Ac₂O (1.1 mL, d = 1.08 g/mL, 1.188 g, 11.5 mmol). After being stirred at room temperature for 2 h, the reaction was complete as monitored by TLC. The mixture was concentrated in vacuo. **1f** (2.9080 g, 67% for two steps) was afforded via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 2/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 1 H, ArH), 7.49 (d, *J* = 7.6 Hz, 1 H, ArH), 7.42 (t, *J* = 7.6 Hz, 1 H, ArH), 7.33 (t, *J* = 7.6 Hz, 1 H, ArH), 4.11 (t, *J* = 6.6 Hz, 2 H, OCH₂), 3.92 (s, 3 H, OCH₃), 3.78 (s, 6 H, OCH₃ × 2), 3.26 (s, 2 H, CH₂), 3.06 (s, 2 H, CH₂), 2.48 (t, *J* = 6.4 Hz, 2 H, CH₂), 2.08 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 169.2, 166.5, 134.4, 131.9, 131.4, 130.0, 127.6, 123.3, 89.2, 82.1, 79.3, 75.9, 62.4, 57.0, 53.0, 52.1, 23.8, 23.0, 20.7, 19.1; MS (ESI) (m/z) 451 ([M+Na]⁺), 429 ([M+H]⁺); IR (neat, cm⁻¹) 1733, 1596, 1568, 1485, 1434, 1386, 1365, 1329, 1292, 1237, 1208, 1130, 1079, 1043; HRMS calcd for C₂₃H₂₈NO₈ ([M+NH₄⁺]): 446.1809; found: 446.1811.

(7) Preparation of 1g (ct-7-87)

Following of Typical Procedure Α, the reaction dimethyl 2-(2-butynyl)-2-(2-propynyl)malonate (1.6742 g, 7.5 mmol), ethyl 2-iodobenzoate (2.2193 g, 7.9 mmol), Pd(PPh₃)₂Cl₂ (0.0488 g, 0.07 mmol), CuI (0.0135 g, 0.07 mmol) in 20 mL of NEt₃ for 3 h afforded **1g** (2.2975 g, 82%) via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 7/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.0 Hz, 1 H, ArH), 7.48 (d, J = 7.6 Hz, 1 H, ArH), 7.41 (t, J = 7.4 Hz, 1 H, ArH), 7.33 (t, J = 7.4 Hz, 1 H, ArH), 4.39 (q, J = 7.1 Hz, 2 H, OCH₂), 3.78 (s, 6 H, OCH₃ × 2), 3.26 (s, 2 H, CH₂), 3.03 (s, 2 H, CH₂), 1.76 (s, 3 H, CH₃), 1.40 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 166.0, 134.4,

132.1, 131.3, 129.9, 127.5, 123.2, 89.2, 82.1, 79.1, 72.9, 61.0, 57.0, 52.9, 23.7, 23.1, 14.1, 3.4; MS (ESI) (m/z) 371 ($[M+H]^+$); IR (neat, cm⁻¹) 1734, 1596, 1568, 1483, 1437, 1390, 1367, 1328, 1290, 1248, 1203, 1132, 1077, 1050, 1018; HRMS calcd for C₂₁H₂₆NO₆ ($[M+NH_4^+]$): 388.1755; found: 388.1756.

(8) Preparation of **1h** (ct-7-93)

of Following **Typical Procedure** A, reaction dimethyl the 2-(2-butynyl)-2-(2-propynyl)malonate (1.5465 g, 7.0 mmol), *iso*-propyl 2-iodobenzoate (2.2415 g, 7.7 mmol), Pd(PPh₃)₂Cl₂ (0.0488 g, 0.07 mmol), CuI (0.0135 g, 0.07 mmol) in 20 mL of NEt₃ for 5 h afforded **1h** (1.9750 g, 74%) via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 7/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.0 Hz, 1 H, ArH), 7.46 (d, J = 7.6Hz, 1 H, ArH), 7.40 (t, J = 7.4 Hz, 1 H, ArH), 7.32 (t, J = 7.4 Hz, 1 H, ArH), 5.26 (hept, J = 6.2 Hz, 1 H, OCH), 3.78 (s, 6 H, OCH₃ × 2), 3.26 (s, 2 H, CH₂), 3.03 (s, 2 H, CH₂), 1.76 (s, 3 H, CH₃), 1.38 (d, J = 6.4 Hz, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) & 169.4, 165.6, 134.3, 132.6, 131.1, 129.8, 127.5, 123.2, 89.1, 82.1, 79.1, 73.0, 68.5, 57.0, 52.9, 23.7, 23.1, 21.7, 3.4; MS (ESI) (m/z) 407 ([M+Na]⁺), 385 ([M+H]⁺); IR (neat, cm⁻¹) 1738, 1596, 1569, 1484, 1436, 1375, 1329, 1289, 1251, 1203, 1139, 1107, 1075, 1054; HRMS calcd for $C_{22}H_{28}NO_6$ ([M+NH₄⁺]): 402.1911; found: 402.1911.

(9) Preparation of 1i (ct-7-95)

2-(2-butynyl)-2-(2-propynyl)malonate *tert*-butyl (1.7690)8.0 mmol). g, 2-iodobenzoate (2.4518 g, 8.1 mmol), Pd(PPh₃)₂Cl₂ (0.0557 g, 0.08 mmol), CuI (0.0155 g, 0.08 mmol) in 20 mL of NEt₃ for 2 h at room temperature and then at 60 °C for 2 h afforded **1i** (2.4991 g, 79%) via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 7/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 1 H, ArH), 7.44 (d, J = 7.6 Hz, 1 H, ArH), 7.38 (t, J = 7.4 Hz, 1 H, ArH), 7.31 (t, J = 7.8 Hz, 1 H, ArH), 3.78 (s, 6 H, OCH₃ × 2), 3.25 (s, 2 H, CH₂), 3.03 (s, 2 H, CH₂), 1.76 (s, 3 H, CH₃), 1.61 (s, 9 H, CH₃ \times 3); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 165.5, 134.4, 133.7, 130.9, 129.8, 127.5, 122.9, 88.7, 82.4, 81.4, 79.1, 73.0, 57.0, 52.9, 28.0, 23.8, 23.1, 3.4; MS (ESI) (m/z) 421 ([M+Na]⁺); IR (neat, cm⁻¹) 1738, 1596, 1568, 1481, 1437, 1392, 1368, 1291, 1250, 1203, 1178, 1131, 1077, 1053; HRMS calcd for $C_{23}H_{30}NO_6$ ([M+NH₄⁺]): 416.2068; found: 416.2069.

(10) Preparation of **1j** (ct-7-57)

Following Typical **Procedure** reaction dimethyl A, the of 6.8 2-(2-butynyl)-2-(2-propynyl)malonate (1.5191)g, mmol), methyl 3-iodothiophene-2-carboxylate (1.8943 g, 7.1 mmol), Pd(PPh₃)₂Cl₂ (0.0420 g, 0.06 mmol), CuI (0.0117 g, 0.06 mmol) in 20 mL of NEt₃ for 10.5 h afforded **1j** (1.8066 g, 73%) via column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 10/1) as a solid: m.p. 92-93 °C (petroleum ether/ ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 4.0, 1 H, ArH), 7.08-7.04 (m, 1 H, ArH), 3.90 (s, 3 H, OCH₃), 3.78 (s, 6 H, OCH₃ × 2), 3.27 (s, 2 H, CH₂), 3.05 (s, 2 H, CH₂), 1.77 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 161.6, 133.4, 132.5, 130.2, 126.9, 90.4, 79.1, 77.8, 72.9, 56.9, 52.9, 52.0, 23.8, 23.0, 3.4; MS (ESI) 380 ([M+NH₄]⁺), 363 ([M+H]⁺); IR (neat, cm⁻¹) 1737, 1696, 1522, 1433, 1380, 1325, 1290, 1227, 1211, 1152, 1112, 1083, 1052; Anal. calcd for C₁₈H₁₈O₆S (%): C 59.66, H 5.01; found: C 59.30, H 5.00.

2. Ni(cod)₂-catalyzed reaction of 1 with carbon dioxide and ZnR₂

(1) Preparation of (*E*,*Z*)-2a (ct-9-142, ct-6-113).

Typical procedure I: To a 50 mL flame-dried Schlenk tube was added Ni(cod)₂ (2.8 mg, 0.01 mmol) inside a glove box. Compound **1a** (356.7 mg, 1.0 mmol) and DMSO (10 mL) were sequentially added under argon outside the glove box. The Schlenk tube was then frozen with a liquid nitrogen bath. The argon inside the tube was completely replaced with CO₂ by using a balloon of CO₂ (about 1 L). The Schlenk tube was allowed to stand until the temperature was above 0 °C. Then the Schlenk tube was placed in an oil bath pre-heated at 90 °C. After completely thawed, to the mixture was added ZnEt₂ (1.5 M in toluene, 1.0 mL, 1.5 mmol) with a syringe. After being vigorously stirred for 3 h, the reaction was complete as monitored by TLC. HCl (3 M, 10 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (10 mL × 3) and the combined organic layer was washed with brine (10 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo.

To the crude product were added MeOH (1 mL) and Et₂O (4 mL). To the resulting mixture was dropwise added TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) with a syringe. After being stirred for 1 h at room temperature, the reaction was complete as monitored by TLC. The reaction mixture was concentrated to afford a mixture of (*E*,*Z*)-**2a**, (*E*,*Z*)-**3a**, and (*Z*,*Z*)-**3a**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*,*Z*)-**2a** (86%), (*E*,*Z*)-**3a** (6%), and (*Z*,*Z*)-**3a** (3%)). (*E*,*Z*)-**2a** (347.4 mg, 78%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 1 H, ArH), 7.40 (t, *J* = 7.4 Hz, 1 H, ArH), 7.31 (t, *J* = 7.6 Hz, 1 H, ArH), 7.13 (d, *J* = 7.7 Hz, 1 H, ArH), 3.84 (s, 3 H,

OCH₃), 3.75 (s, 6 H, OCH₃ × 2), 3.62 (s, 3 H, OCH₃), 3.56 (d, J = 16.9 Hz, 1 H, one proton of CH₂), 3.46 (d, J = 17.1 Hz, 1 H, one proton of CH₂), 3.06 (d, J = 15.1 Hz, 1 H, one proton of CH₂), 2.93 (d, J = 15.1 Hz, 1 H, one proton of CH₂), 1.76-1.65 (m, 1 H, one proton of CH₂), 1.51 (s, 3 H, CH₃), 1.33-1.22 (m, 1 H, one proton of CH₂), 0.17 (t, J = 7.5 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.8, 167.7, 167.2, 149.8, 140.9, 138.7, 132.8, 132.1, 130.3, 129.8, 129.6, 128.8, 127.3, 56.0, 52.8, 52.7, 51.8, 51.4, 40.8, 37.0, 27.9, 18.3, 10.6; MS (EI) (m/z) (%) 444 (M⁺, 9.2), 320 (100); IR (neat, cm⁻¹) 1729, 1611, 1566, 1483, 1432, 1263, 1210, 1162, 1133, 1078, 1049, 1011; Anal. calcd for C₂₄H₂₈O₈ (%): C 64.85, H 6.35; found: C 64.87, H 6.25.

Gram scale preparation of (E,Z)-2a (ct-8-134).

To a 100 mL flame-dried Schlenk flask was added Ni(cod)₂ (8.3 mg, 0.03 mmol) inside a glove box. Compound **1a** (1.0687 g, 3.0 mmol) and DMSO (30 mL) were sequentially added under argon outside the glove box. The Schlenk flask was then frozen with a liquid nitrogen bath. The argon inside the flask was completely replaced with CO₂ by using a balloon of CO₂ (about 1.5 L). The Schlenk flask was allowed to stand until the temperature was above 0 °C. Then the Schlenk flask was placed in an oil bath pre-heated at 90 °C. After completely thawed, to the mixture was added ZnEt₂ (1.5 M in toluene, 3.0 mL, 4.5 mmol) with a syringe. After being vigorously stirred for 3 h, the reaction was complete as monitored by TLC. HCl (3 M, 30 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (10 mL × 5) and the combined organic layer was washed with brine (30 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo.

To the crude product were added MeOH (3 mL) and Et_2O (12 mL). To the resulting mixture was dropwise added TMSCHN₂ (2.0 M in hexane, 6.0 mL, 12.0 mmol) with a syringe in 2 min. After being stirred for 1 h at room temperature, the reaction was complete as monitored by TLC. The reaction mixture was concentrated

to afford a mixture of (E,Z)-**2a**, (E,Z)-**3a**, and (Z,Z)-**3a**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*,*Z*)-**2a** (86%), (*E*,*Z*)-**3a** (3%), and (*Z*,*Z*)-**3a** (2%)). (*E*,*Z*)-**2a** (1.0403 g, 78%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) as a white solid: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.5 Hz, 1 H, ArH), 7.40 (t, *J* = 7.2 Hz, 1 H, ArH), 7.31 (t, *J* = 7.4 Hz, 1 H, ArH), 7.13 (d, *J* = 7.6 Hz, 1 H, ArH), 3.84 (s, 3 H, OCH₃), 3.75 (s, 6 H, OCH₃ × 2), 3.62 (s, 3 H, OCH₃), 3.56 (d, *J* = 17.0 Hz, 1 H, one proton of CH₂), 3.47 (d, *J* = 17.0 Hz, 1 H, one proton of CH₂), 2.93 (d, *J* = 15.2 Hz, 1 H, one proton of CH₂), 1.76-1.64 (m, 1 H, one proton of CH₂), 1.51 (s, 3 H, CH₃), 1.33-1.21 (m, 1 H, one proton of CH₂), 0.17 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.8, 167.7, 167.2, 149.8, 140.9, 138.6, 132.8, 132.1, 130.3, 129.7, 129.5, 128.8, 127.3, 56.0, 52.8, 52.7, 51.9, 51.4, 40.7, 37.0, 27.8, 18.3, 10.5.

The following compounds were prepared according to Typical Procedure I.

(2) Preparation of (*E*)-2b (ct-6-111).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1a** (355.8 mg, 1.0 mmol), ZnMe₂ (1.0 M in toluene, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (*E*)-**2b**, (*E*)-**3b**, and (*Z*)-**3b**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*)-**2b** (67%), (*E*)-**3b** (1%), and (*Z*)-**3b** (1%)). (*E*)-**2b** (260.5 mg, 61%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.7 Hz, 1 H, ArH), 7.39 (t, *J* = 7.5 Hz, 1 H, ArH), 7.30 (t, *J* =

6.9 Hz, 1 H, ArH), 7.12 (d, J = 7.7 Hz, 1 H, ArH), 3.83 (s, 3 H, OCH₃), 3.75 (s, 6 H, OCH₃ × 2), 3.63 (s, 3 H, OCH₃), 3.58 (d, J = 17.3 Hz, 1 H, one proton of CH₂), 3.50 (d, J = 17.1 Hz, 1 H, one proton of CH₂), 3.06 (d, J = 15.1 Hz, 1 H, one proton of CH₂), 2.95 (d, J = 15.3 Hz, 1 H, one proton of CH₂), 1.54 (s, 3 H, CH₃), 0.91 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.8, 167.7, 167.4, 150.2, 141.1, 134.3, 132.6, 132.0, 130.3, 130.2, 129.2, 128.8, 127.1, 56.2, 52.9, 52.8, 51.9, 51.5, 40.9, 37.1, 22.4, 22.2; MS (EI) (m/z) (%) 430 (M⁺, 15.86), 306 (100); IR (neat, cm⁻¹) 1723, 1611, 1433, 1375, 1281, 1267, 1243, 1209, 1121, 1084, 1049; HRMS calcd for C₂₃H₂₆O₈ (M⁺): 430.1628; found: 430.1624.

(3) Preparation of (*E*,*Z*)-2d (ct-9-107, ct-7-73).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1b** (386.4 mg, 1.0 mmol), ZnEt₂ (1.5 M in toluene, 1.0 mL, 1.5 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (*E*,*Z*)-2d, (*E*,*Z*)-3d, and (*Z*,*Z*)-3d. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*,*Z*)-2d (71%), (*E*,*Z*)-3d (2%), and (*Z*,*Z*)-3d (4%)). (*E*,*Z*)-2d (301.4 mg, 64%) was obtained via recrystallization (petroleum ether/dichloromethane = 5/1) as a white solid: m.p.163-164 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1 H, ArH), 7.04 (d, *J* = 8.6 Hz, 1 H, ArH), 6.95 (d, *J* = 8.6 Hz, 1 H, ArH), 3.84 (s, 6 H, OCH₃ × 2), 3.75 (s, 6 H, OCH₃ × 2), 3.62 (s, 3 H, OCH₃), 3.52 (d, *J* = 17.0 Hz, 1 H, one proton of CH₂), 2.93 (d, *J* = 15.0 Hz, 1 H, one proton of CH₂), 1.79-1.67 (m, 1 H, one proton of CH₂), 1.52 (s, 3 H, CH₃), 1.34-1.21 (m, 1 H, one proton of CH₂), 0.25 (t, *J* = 7.4 Hz, 3

H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.8, 168.0, 167.0, 158.5, 149.3, 138.4, 134.0, 133.2, 130.4, 129.8, 128.4, 118.4, 114.7, 56.0, 55.3, 52.8, 52.7, 51.9, 51.4, 40.8, 36.9, 27.8, 18.2, 10.8; MS (EI) (m/z) (%) 474 (M⁺, 17.68), 350 (100); IR (neat, cm⁻¹) 1719, 1602, 1497, 1431, 1378, 1317, 1292, 1248, 1212, 1178, 1116, 1067, 1031; Anal. calcd for C₂₅H₃₀O₉ (%): C 63.28, H 6.37; found: C 63.33, H 6.33.

(4) Preparation of (*E*)-2e (ct-7-69).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1b** (385.7 mg, 1.0 mmol), ZnMe₂ (1.0 M in toluene, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (E)-2e and (Z)-3e. The NMR yields were determined by ¹H NMR analysis of the crude products using CH_2Br_2 as the internal standard ((E)-2e (69%) and (Z)-3e (2%)). (E)-2e was obtained via column chromatography on silica gel (eluent: petroleum ether/dichloromethane/ethyl acetate = 4/2/1) to afford 314.3 mg of impure product, which was then recrystallized (petroleum ether/dichloromethane = 7/1) to afford 261.9 mg of pure (E)-2e (57%) as a white solid: m.p. 161-162 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 2.0 Hz, 1 H, ArH), 7.10 (d, J = 8.5 Hz, 1 H, ArH), 7.01 (dd, J = 8.6, 2.2 Hz, 1 H, ArH), 3.91 (s, 3 H, OCH₃), 3.90 (s, 3 H, OCH₃), 3.822 (s, 3 H, OCH₃), 3.815 (s, 3 H, OCH₃), 3.70 (s, 3 H, OCH_3), 3.62 (d, J = 17.0 Hz, 1 H, one proton of CH_2), 3.54 (d, J = 17.2 Hz, 1 H, one proton of CH₂), 3.11 (d, J = 15.1 Hz, 1 H, one proton of CH₂), 3.02 (d, J = 15.2 Hz, 1 H, one proton of CH₂), 1.63 (s, 3 H, CH₃), 1.03 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) & 172.3, 171.8, 167.9, 167.1, 158.1, 149.6, 133.9, 133.8, 133.4, 130.3, 130.1, 128.4, 118.3, 114.4, 56.2, 55.2, 52.8, 52.7, 51.9, 51.4, 40.9, 37.0, 22.3, 22.2; MS (EI)

(m/z) (%) 460 (M⁺, 24.91), 337 (100); IR (neat, cm⁻¹) 1721, 1603, 1498, 1431, 1374, 1289, 1252, 1215, 1180, 1122, 1071, 1034; Anal. calcd for C₂₄H₂₈O₉ (%): C 62.60, H 6.13; found: C 62.40, H 6.16.

(5) Preparation of (*Z*,*E*)-**2f** (ct-6-127).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1c** (394.4 mg, 1.0 mmol), ZnEt₂ (1.5 M in toluene, 2.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (Z,E)-2f and (E,E)-3f. The NMR yields were determined by ¹H NMR analysis of the crude products using CH_2Br_2 as the internal standard ((Z,E)-2f (42%) and (E,E)-3f (8%)). (Z,E)-2f was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) to afford 207.6 mg of impure product, which was then recrystallized from petroleum ether/dichloromethane = 6/1 to afford 182.0 mg of pure (Z,E)-2f (38%) as a white solid: m.p. 157-158 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.95 (m, 1 H, ArH), 7.75 (d, J = 7.8 Hz, 2 H, ArH), 7.36-7.25 (m, 4 H, ArH), 6.65-6.57 (m, 1 H, ArH), 4.65 (d, J = 15.0 Hz, 1 H, one proton of CH₂), 4.23 (d, J = 15.0 Hz, 1 H, one proton of CH₂), 4.07 (d, J = 12.7Hz, 1 H, one proton of CH₂), 3.93 (d, J = 12.7 Hz, 1 H, one proton of CH₂), 3.81 (s, 3 H, OCH₃), 3.63 (s, 3 H, OCH₃), 2.39 (s, 3 H, CH₃), 1.64-1.52 (m, 1 H, one proton of CH₂), 1.45 (s, 3 H, CH₃), 1.19-1.08 (m, 1 H, one proton of CH₂), 0.10 (t, J = 7.3 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 167.0, 144.4, 143.6, 140.7, 139.6, 133.7, 132.3, 132.1, 130.5, 129.7, 129.65, 129.55, 127.9, 127.6, 126.6, 53.4, 52.0, 51.8, 49.9, 27.8, 21.4, 18.7, 10.1; MS (EI) (m/z) (%) 483 (M⁺, 3.97), 264 (100); IR (neat, cm⁻¹) 1718, 1647, 1612, 1597, 1569, 1488, 1450, 1430, 1339, 1291, 1249, 1217, 1192, 1156, 1132, 1083, 1040, 1016; Anal. calcd for C₂₆H₂₉NO₆S (%): C 64.58, H 6.04, N 2.90; found: C 64.48, H 6.00, N 2.92.

(6) Preparation of (*Z*)-2g (ct-6-112).

The reaction of Ni(cod)₂ (2.8 mg, 0.01 mmol), **1c** (395.0 mg, 1.0 mmol), ZnMe₂ (1.0 M in toluene, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (Z)-2g and (E)-3g. The NMR yields were determined by ¹H NMR analysis of the crude products using CH_2Br_2 as the internal standard ((Z)-2g (43%) and (E)-3g (3%)). (Z)-2g was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) to afford 201.3 mg of impure product, which was then recrystallized (petroleum ether/dichloromethane = 4/1) to afford 189.0 mg of pure (Z)-2g (40%) as a white solid: m.p. 150-151 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.95 (m, 1 H, ArH), 7.75 (d, J = 8.1 Hz, 2 H, ArH), 7.36-7.28 (m, 4 H, ArH), 6.71-6.64 (m, 1 H, ArH), 4.65 (d, J = 15.3 Hz, 1 H, one proton of CH₂), 4.26 (d, J = 15.2 Hz, 1 H, one proton of CH₂), 4.04 (d, J = 12.8 Hz, 1 H, one proton of CH₂), 3.96 (d, J = 12.8 Hz, 1 H, one proton of CH₂), 3.80 (s, 3 H, OCH₃), 3.63 (s, 3 H, OCH₃), 2.40 (s, 3 H, CH₃), 1.48 (s, 3 H, CH₃), 0.80 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 167.0, 144.8, 143.7, 139.7, 136.3, 133.4, 132.0, 130.4, 129.7, 129.3, 129.2, 127.59, 127.57, 127.1, 53.5, 52.0, 51.8, 50.0, 22.6, 22.3, 21.4; MS (EI) (m/z) (%) 469 (M⁺, 12.93), 250 (100); IR (neat, cm⁻¹) 1720, 1654, 1612, 1569, 1488, 1448, 1429, 1370, 1339, 1295, 1252, 1219, 1190, 1157, 1131, 1081, 1039, 1006; Anal. calcd for C₂₅H₂₇NO₆S (%): C 63.95, H 5.80, N 2.98; found: C 63.67, H 5.76, N 2.98.

(7) Preparation of (*Z*)-2h (ct-6-117).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1d** (242.6 mg, 1.0 mmol), ZnMe₂ (1.0 M in toluene, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (*Z*)-**2h** and (*E*)-**3h**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*Z*)-**2h** (59%) and (*E*)-**3h** (1%)). (*Z*)-**2h** (180.3 mg, 57%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.9 Hz, 1 H, ArH), 7.44 (t, *J* = 7.6 Hz, 1 H, ArH), 7.35 (t, *J* = 7.6 Hz, 1 H, ArH), 7.21 (d, *J* = 7.7 Hz, 1 H, ArH), 4.91 (d, *J* = 15.5 Hz, 1 H, one proton of CH₂), 4.87 (d, *J* = 14.8 Hz, 1 H, one proton of CH₂), 4.56 (d, *J* = 10.8 Hz, 1 H, one proton of CH₂), 4.40 (d, *J* = 10.8 Hz, 1 H, one proton of CH₂), 1.57 (s, 3 H, CH₃), 0.93 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 167.2, 149.5, 140.3, 134.8, 132.2, 132.1, 130.4, 130.0, 129.6, 127.3, 126.9, 72.7, 69.4, 51.9, 51.6, 22.8, 22.5; MS (EI) (m/z) (%) 316 (M⁺, 33.28), 224 (100); IR (neat, cm⁻¹) 1712, 1654, 1601, 1571, 1434, 1375, 1289, 1256, 1216, 1128, 1084, 1059, 1019; HRMS calcd for C₁₈H₂₀O₅ (M⁺): 316.1311; found: 316.1313.

(8) Preparation of (*E*,*E*)-2i (ct-9-127, ct-8-86).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1e** (384.3 mg, 1.0 mmol), ZnEt₂ (1.5 M in toluene, 1.0 mL, 1.5 mmol), and carbon dioxide (about 1 L) in 10 mL of

DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et_2O afforded a mixture of (E,E)-2i, (E,E)-3i, and (Z,E)-3i. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*,*E*)-2i (68%), (*E*,*E*)-3i (2%), and (Z,E)-3i (4%)). (E,E)-2i (303.0 mg, 64%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.5 Hz, 1 H, ArH), 7.37 (t, J = 7.0 Hz, 1 H, ArH), 7.31 (t, J = 7.3 Hz, 1 H, ArH), 7.13 (d, J = 7.4 Hz, 1 H, ArH), 3.84 (s, 3 H, OCH₃), 3.74 (s, 6 H, OCH₃ × 2), 3.62 (s, 3 H, OCH₃), 3.52 (s, 2 H, CH₂), 3.12 (d, J = 14.7 Hz, 1 H, one proton of CH_2), 2.92 (d, J = 14.9 Hz, 1 H, one proton of CH_2), 2.00-1.71 (m, 3 H, CH₂ + one proton of CH₂), 1.28-1.08 (m, 3 H, CH₂ + one proton of CH₂), 0.77 (t, J = 7.2 Hz, 3 H, CH₃), 0.26 (t, J = 7.5 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.6, 167.5, 167.0, 150.2, 142.7, 140.7, 132.8, 131.9, 130.2, 129.9, 129.3, 128.6, 127.2, 55.8, 52.7, 52.6, 51.7, 51.3, 40.1, 36.6, 33.7, 25.6, 20.8, 14.0, 10.9; MS (EI) (m/z) (%) 472 (M⁺, 32.00), 443 (100); IR (neat, cm⁻¹) 2955, 2873, 1719, 1601, 1434, 1374, 1243, 1205, 1171, 1129, 1081, 1045, 1009; HRMS calcd for C₂₆H₃₂O₈ (M⁺): 472.2097; found: 472.2100.

(9) Preparation of (*E*,*E*)-**2j** (ct-6-155).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1e** (384.9 mg, 1.0 mmol), ZnMe₂ (1.0 M in toluene, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (E,E)-2j, (E,E)-3j, and (Z,E)-3j. The NMR yields were determined by ¹H NMR analysis of the

crude products using CH₂Br₂ as the internal standard ((*E*,*E*)-**2j** (74%), (*E*,*E*)-**3j** (2%), and (*Z*,*E*)-**3j** (1%)). (*E*,*E*)-**2j** (304.2 mg, 66%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.5 Hz, 1 H, ArH), 7.37 (t, *J* = 7.2 Hz, 1 H, ArH), 7.30 (t, *J* = 7.1 Hz, 1 H, ArH), 7.13 (d, *J* = 7.5 Hz, 1 H, ArH), 3.84 (s, 3 H, OCH₃), 3.75 (s, 6 H, OCH₃ × 2), 3.63 (s, 3 H, OCH₃), 3.54 (s, 2 H, CH₂), 3.12 (d, *J* = 15.3 Hz, 1 H, one proton of CH₂), 2.94 (d, *J* = 15.0 Hz, 1 H, one proton of CH₂), 2.02-1.91 (m, 1 H, one proton of CH₂), 1.86-1.74 (m, 1 H, one proton of CH₂), 1.24-1.06 (m, 2 H, CH₂), 0.91 (s, 3 H, CH₃), 0.75 (t, *J* = 7.3 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.8, 167.6, 167.3, 150.5, 141.1, 138.3, 132.8, 132.0, 130.5, 130.2, 129.1, 128.9, 127.1, 56.0, 52.85, 52.75, 51.9, 51.5, 40.5, 38.3, 36.7, 20.6, 20.4, 14.0; MS (EI) (m/z) (%) 458 (M⁺, 8.14), 334 (100); IR (neat, cm⁻¹) 2954, 1718, 1599, 1434, 1377, 1249, 1207, 1173, 1130, 1081, 1052, 1021; HRMS calcd for C₂₅H₃₀O₈ (M⁺): 458.1941; found: 458.1944.

(10) Preparation of (*E*,*E*)-2k (ct-6-172).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1f** (427.8 mg, 1.0 mmol), ZnEt₂ (1.5 M in toluene, 2.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (*E,E*)-**2k**, (*E,E*)-**3k**, and (*Z,E*)-**3k**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E,E*)-**2k** (65%), (*E,E*)-**3k** (4%), and (*Z,E*)-**3k** (2%)). (*E,E*)-**2k** (288.7 mg, purity of 94%, 53%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.4 Hz, 1 H, ArH), 7.40-7.28 (m, 2

H, ArH), 7.10 (d, J = 7.4 Hz, 1 H, ArH), 3.88-3.79 (m, 5 H, OCH₃ + OCH₂), 3.75 (s, 6 H, OCH₃ × 2), 3.63 (s, 3 H, OCH₃), 3.56 (d, J = 17.4 Hz, 1 H, one proton of CH₂), 3.48 (d, J = 17.3 Hz, 1 H, one proton of CH₂), 3.15 (d, J = 15.1 Hz, 1 H, one proton of CH₂), 2.95 (d, J = 14.9 Hz, 1 H, one proton of CH₂), 2.41-2.31 (m, 1 H, one proton of CH₂), 2.26-2.17 (m, 1 H, one proton of CH₂), 2.02 (s, 3 H, CH₃), 1.84-1.72 (m, 1 H, one proton of CH₂), 1.31-1.20 (m, 1 H, one proton of CH₂), 0.26 (t, J = 7.5 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 171.6, 170.7, 167.4, 167.1, 149.4, 140.5, 137.6, 132.8, 132.6, 132.0, 130.3, 129.54, 129.46, 127.6, 62.3, 55.9, 52.9, 52.8, 51.9, 51.5, 40.0, 36.8, 30.8, 26.1, 20.8, 10.9; MS (EI) (m/z) (%) 516 (M⁺, 10.61), 332 (100); IR (neat, cm⁻¹) 2954, 1718, 1602, 1570, 1434, 1384, 1365, 1239, 1205, 1170, 1132, 1080, 1044; HRMS calcd for C₂₇H₃₂O₁₀ (M⁺): 516.1995; found: 519.1990.

(11) Preparation of (*E*,*E*)-**2l** (ct-6-173).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1f** (428.4 mg, 1.0 mmol), ZnMe₂ (1.0 M in toluene, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (*E,E*)-**2l**, (*E,E*)-**3l**, and (*Z,E*)-**3l**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E,E*)-**2l** (59%), (*E,E*)-**3l** (2%), and (*Z,E*)-**3l** (2%)). (*E,E*)-**2l** (257.1 mg, 51%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.7 Hz, 1 H, ArH), 7.39-7.28 (m, 2 H, ArH), 7.09 (d, *J* = 7.4 Hz, 1 H, ArH), 3.96-3.79 (m, 5 H, OCH₃ + OCH₂), 3.75 (s, 6 H, OCH₃ × 2), 3.63 (s, 3 H, OCH₃), 3.59 (d, *J* = 17.4 Hz, 1 H, one proton of CH₂), 3.13 (d, *J* = 15.3 Hz, 1 H, one proton of

CH₂), 2.98 (d, J = 15.4 Hz, 1 H, one proton of CH₂), 2.43-2.32 (m, 1 H, one proton of CH₂), 2.19-2.09 (m, 1 H, one proton of CH₂), 2.02 (s, 3 H, CH₃), 0.96 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.6, 170.7, 167.4, 167.2, 149.6, 140.7, 133.2, 133.1, 132.5, 131.9, 130.3, 129.8, 129.1, 127.4, 62.2, 56.1, 52.9, 52.8, 51.9, 51.5, 40.4, 36.8, 35.3, 20.8, 20.7; MS (EI) (m/z) (%) 502 (M⁺, 10.78), 319 (100); IR (neat, cm⁻¹) 2954, 1718, 1600, 1570, 1434, 1382, 1243, 1206, 1131, 1080, 1045; HRMS calcd for C₂₆H₃₀O₁₀ (M⁺): 502.1839; found: 502.1836.

(12) Preparation of (*E*,*Z*)-2n (ct-9-73, ct-7-88).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1g** (370.0 mg, 1.0 mmol), ZnEt₂ (1.5 M in toluene, 1.0 mL, 1.5 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (*E*,*Z*)-**2n**, (*E*,*Z*)-**3n**, and (*Z*,*Z*)-**3n**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*,*Z*)-**2n** (77%), (*E*,*Z*)-**3n** (5%), and (*Z*,*Z*)-**3n** (4%)). (*E*,*Z*)-**2n** was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) to afford 347.0 mg of impure product, which was then recrystallized (petroleum ether/dichloromethane = 20/1) to afford 307.3 mg of pure (*E*,*Z*)-**2n** (67%) as a white solid: m.p. 101-102 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.7 Hz, 1 H, ArH), 7.39 (t, *J* = 7.6 Hz, 1 H, ArH), 7.30 (t, *J* = 7.4 Hz, 1 H, ArH), 7.12 (d, *J* = 7.5 Hz, 1 H, ArH), 4.39-4.22 (m, 2 H, OCH₂), 3.74 (s, 6 H, OCH₃ × 2), 3.61 (s, 3 H, OCH₃), 3.57 (d, *J* = 17.2 Hz, 1 H, one proton of CH₂), 2.93 (d, *J* = 15.0 Hz, 1 H, one proton of CH₂), 3.06 (d, *J* = 15.2 Hz, 1 H, one proton of CH₂), 1.51 (s, 3 H, CH₃), 1.33 (t, *J* = 700 Hz, 1.79-1.65 (m, 1 H, one proton of CH₂), 1.51 (s, 3 H, CH₃), 1.33 (t, *J* =

7.2 Hz, 3 H, CH₃), 1.37-1.23 (m, 1 H, one proton of CH₂), 0.19 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.7, 167.6, 166.6, 149.6, 140.8, 138.5, 132.7, 131.9, 130.2, 129.8, 129.7, 128.8, 127.2, 60.8, 55.9, 52.7, 52.6, 51.3, 40.6, 36.9, 27.7, 18.2, 14.0, 10.5; MS (EI) (m/z) 458 (%) (M⁺, 8.63), 320 (100); IR (neat, cm⁻¹) 2953, 1730, 1712, 1605, 1569, 1484, 1436, 1386, 1368, 1286, 1256, 1207, 1170, 1138, 1119, 1098, 1075, 1051, 1003; Anal. calcd for C₂₅H₃₀O₈ (%): C 65.49, H 6.60; found: C 65.47, H 6.63.

(13) Preparation of (*E*,*Z*)-20 (ct-9-74, ct-7-94).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1h** (384.9 mg, 1.0 mmol), ZnEt₂ (1.5 M in toluene, 1.0 mL, 1.5 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (*E*,*Z*)-**20**, (*E*,*Z*)-**30**, and (*Z*,*Z*)-**30**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*,*Z*)-**20** (78%), (*E*,*Z*)-**30** (6%), and (*Z*,*Z*)-**30** (3%)). (*E*,*Z*)-**20** (351.7 mg, 74%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 7/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.4 Hz, 1 H, ArH), 7.38 (t, *J* = 7.2 Hz, 1 H, ArH), 7.30 (t, *J* = 7.9 Hz, 1 H, ArH), 7.09 (d, *J* = 7.5 Hz, 1 H, ArH), 5.17 (heptet, *J* = 6.3 Hz, 1 H, OCH), 3.75 (s, 6 H, OCH₃ × 2), 3.63-3.53 (m, 4 H, OCH₃ + one proton of CH₂), 3.47 (d, *J* = 17.1 Hz, 1 H, one proton of CH₂), 3.06 (d, *J* = 14.9 Hz, 1 H, one proton of CH₂), 1.50 (s, 3 H, CH₃), 1.35-1.21 (m, 7 H, CH₃ × 2 + one proton of CH₂), 0.19 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.8, 167.6, 166.2, 149.6, 140.8, 138.6, 132.7, 131.9, 130.3, 130.2, 129.8, 129.0, 127.2, 68.5, 56.0, 52.8, 52.7, 51.4, 40.6, 37.1, 27.7, 21.7, 18.2, 10.7; MS (EI) (m/z) (%) 472 (M⁺, 7.09),

320 (100); IR (neat, cm⁻¹) 1714, 1603, 1435, 1375, 1340, 1271, 1210, 1153, 1130, 1106, 1078, 1060, 1011; HRMS calcd for $C_{26}H_{32}O_8(M^+)$: 472.2097; found: 472.2090.

(14) Preparation of (*E*,*Z*)-2q (ct-9-75, ct-8-85).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1i** (398.9 mg, 1.0 mmol), ZnEt₂ (1.5 M in toluene, 1.0 mL, 1.5 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et_2O afforded a mixture of (E,Z)-2q, (E,Z)-3q, and (Z,Z)-3q. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((E,Z)-2q (78%), (E,Z)-3q (6%), and (Z,Z)-3q (3%)). (E,Z)-2q was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) to afford 352.4 mg of impure product, which was then recrystallized (petroleum ether (1.5 mL)) to afford 313.2 mg of pure (E,Z)-2q (64%) as a white solid: m.p. 83-85 °C (petroleum ether/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.2 Hz, 1 H, ArH), 7.35 (t, J = 7.0 Hz, 1 H, ArH), 7.28 (t, J = 7.6 Hz, 1 H, ArH), 7.08 (d, J = 7.4 Hz, 1 H, ArH), 3.743 (s, 3 H, OCH_3), 3.740 (s, 3 H, OCH_3), 3.61 (s, 3 H, OCH_3), 3.58 (d, J = 19.1 Hz, 1 H, one proton of CH₂), 3.49 (d, J = 17.3 Hz, 1 H, one proton of CH₂), 3.07 (d, J = 14.9 Hz, 1 H, one proton of CH₂), 2.92 (d, J = 15.1 Hz, 1 H, one proton of CH₂), 1.86-1.76 (m, 1 H, one proton of CH₂), 1.53 (s, 9 H, CH₃ \times 3), 1.51 (s, 3 H, CH₃), 1.35-1.22 (m, 1 H, one proton of CH₂), 0.22 (t, J = 7.5 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.8, 167.5, 165.9, 149.5, 140.5, 138.6, 132.5, 131.5, 131.4, 130.3, 129.9, 129.1, 127.1, 81.4, 56.0, 52.7, 52.6, 51.4, 40.6, 37.1, 27.8, 27.5, 18.2, 10.7; MS (EI) (m/z) (%) 486 (M⁺, 34.67), 401 (100); IR (neat, cm⁻¹) 2966, 1746, 1711, 1603, 1437, 1393, 1370, 1292, 1244, 1209, 1169, 1125, 1074, 1059; Anal. calcd for C₂₇H₃₄O₈ (%): C 66.65, H 7.04; found: C 66.89, H 7.08.

(15) Preparation of (*E*)-2t (ct-7-59).

The reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1j** (361.6 mg, 1.0 mmol), ZnMe₂ (1.0 M in toluene, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (*E*)-**2t**, (*E*)-**3t**, and (*Z*)-**3t**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*)-**2t** (64%), (*E*)-**3t** (1%), and (*Z*)-**3t** (1%)). (*E*)-**2t** (259.6 mg, 60%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 5.1 Hz, 1 H, ArH), 6.80 (d, *J* = 5.0 Hz, 1 H, ArH), 3.82 (s, 3 H, OCH₃), 3.74 (s, 6 H, OCH₃ × 2), 3.68 (s, 3 H, OCH₃), 3.46 (s, 2 H, CH₂), 2.99 (bs, 2 H, CH₂), 1.61 (s, 3 H, CH₃), 1.01 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 167.4, 162.2, 151.8, 145.5, 135.8, 131.6, 130.2, 129.2, 128.2, 123.1, 56.0, 52.7, 51.8, 51.5, 40.8, 36.8, 22.2, 22.1; MS (EI) (m/z) (%) 436 (M⁺, 20.96), 313 (100); IR (neat, cm⁻¹) 2949, 1734, 1707, 1643, 1600, 1520, 1437, 1408, 1388, 1273, 1248, 1223, 1160, 1111, 1084, 1051; HRMS calcd for C₂₁H₂₄O₈S (M⁺): 436.1192; found: 436.1196.

3. Ni(cod)₂-catalyzed reaction of 1 with carbon dioxide and $ZnEt_2$ –preparation of the acids.

(1) Preparation of (*Z*,*E*)-4s (ct-6-139).

Typical procedure II: To a 50 mL flame-dried Schlenk tube was added Ni(cod)₂ (2.8 mg, 0.01 mmol) inside a glove box. Compound **1d** (242.2 mg, 1.0 mmol)

and DMSO (10 mL) were sequentially added under argon outside the glove box. The Schlenk tube was then frozen with a liquid nitrogen bath. The argon inside the tube was completely replaced with CO_2 by using a balloon of CO_2 (about 1 L). The Schlenk tube was allowed to stand until the temperature was above 0 °C. Then the Schlenk tube was placed in an oil bath pre-heated at 90 °C. After completely thawed, to the mixture was added ZnEt₂ (1.5 M in toluene, 2.0 mL, 3.0 mmol) with a syringe. After being vigorously stirred for 3 h, the reaction was complete as monitored by TLC. HCl (3 M, 10 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (10 mL \times 3) and the combined organic layer was washed with brine (10 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo to afford a mixture of (Z,E)-4s, (Z,E)-3s, and (E,E)-3s. The NMR yields were determined by ¹H NMR analysis of the crude products using CH_2Br_2 as the internal standard ((Z,E)-4s (61%), (Z,E)-3s (1%), and (E,E)-3s (3%)). (Z,E)-4s was obtained via column chromatography on silica gel (eluent: petroleum ether/acetone = 5/1) to afford 208.5 which of impure product, then recrystallized (petroleum mg was ether/dichloromethane = 7/1) to afford 165.1 mg of pure (Z,E)-4s (52%) as a solid: m.p. 153-155 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃) δ 11.59 (bs, 1 H, CO₂H), 8.05 (d, J = 7.6 Hz, 1 H, ArH), 7.43 (t, J = 7.2 Hz, 1 H, ArH), 7.35 (t, J = 7.5 Hz, 1 H, ArH), 7.18 (d, J = 7.4 Hz, 1 H, ArH), 4.92 (d, J = 14.6 Hz, 1 H, one proton of CH₂), 4.77 (d, J = 14.5 Hz, 1 H, one proton of CH₂), 4.54 (d, J =10.6 Hz, 1 H, one proton of CH₂), 4.37 (d, J = 10.8 Hz, 1 H, one proton of CH₂), 3.86 (s, 3 H, OCH₃), 1.76-1.64 (m, 1 H, one proton of CH₂), 1.53 (s, 3 H, CH₃), 1.37-1.25 (m, 1 H, one proton of CH₂), 0.20 (t, J = 7.4 Hz, 3 H, CH₃); ¹H NMR (400 MHz, DMSO- d_6) δ 12.37 (s, 1 H, CO₂H), 7.93 (d, J = 7.7 Hz, 1 H, ArH), 7.49 (t, J = 7.4 Hz, 1 H, ArH), 7.40 (t, J = 7.5 Hz, 1 H, ArH), 7.19 (d, J = 7.7 Hz, 1 H, ArH), 4.74 (d, J =14.2 Hz, 1 H, one proton of CH₂), 4.58 (d, J = 14.3 Hz, 1 H, one proton of CH₂), 4.44 (d, J = 11.0 Hz, 1 H, one proton of CH₂), 4.32 (d, J = 10.5 Hz, 1 H, one proton of CH₂), 3.76 (s, 3 H, OCH₃), 1.69-1.58 (m, 1 H, one proton of CH₂), 1.50 (s, 3 H, CH₃), 1.42-1.32 (m, 1 H, one proton of CH₂), 0.08 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 167.2, 150.8, 140.4, 140.0, 132.6, 132.4, 130.6, 130.0, 129.5,

127.9, 127.0, 72.5, 69.2, 52.1, 28.3, 19.1, 10.2; MS (EI) (m/z) (%) 316 (M⁺, 14.18), 255 (100); IR (neat, cm⁻¹) 3500-2000, 1712, 1675, 1603, 1573, 1482, 1454, 1434, 1409, 1265, 1190, 1136, 1087, 1049; Anal. calcd for $C_{18}H_{20}O_5$ (%): C 68.34, H 6.37; found: C 68.59, H 6.15.

(2) Preparation of (*E*,*Z*)-4a (ct-8-101).

Following **Typical procedure II**, the reaction of Ni(cod)₂ (0.8 mg, 0.003 mmol), 1a (107.5 mg, 0.3 mmol), ZnEt₂ (1.5 M in toluene, 0.6 mL, 0.9 mmol) and carbon dioxide (about 1 L) in 3 mL of DMSO for 40 min afforded a mixture of (E,Z)-4a, (E,Z)-3a, and (Z,Z)-3a. The NMR yields were determined by ¹H NMR analysis of the crude products using CH_2Br_2 as the internal standard ((*E*,*Z*)-4a (83%), (*E*,*Z*)-3a (3%), and (Z,Z)-3a (1%)). (E,Z)-4a (110.4 mg, purity of 87%, 74%) was obtained via column chromatography on silica gel (eluent: dichloromethane/methanol = 40/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 11.87 (bs, 1 H, CO₂H), 8.02 (d, *J* = 7.5 Hz, 1 H, ArH), 7.39 (t, J = 7.1 Hz, 1 H, ArH), 7.31 (t, J = 7.5 Hz, 1 H, ArH), 7.12 (d, J = 7.7 Hz, 1 H, ArH), 3.86 (s, 3 H, OCH₃), 3.76 (s, 3 H, OCH₃), 3.74 (s, 3 H, OCH₃), 3.64 (d, J = 17.6 Hz, 1 H, one proton of CH₂), 3.44 (d, J = 17.3 Hz, 1 H, one proton of CH₂), 3.06 (d, J = 14.9 Hz, 1 H, one proton of CH₂), 2.91 (d, J = 15.1 Hz, 1 H, one proton of CH₂), 1.75-1.65 (m, 1 H, one proton of CH₂), 1.51 (s, 3 H, CH₃), 1.36-1.24 (m, 1 H, one proton of CH₂), 0.16 (t, J = 7.4 Hz, 3 H, CH₃); ¹H NMR (400 MHz, DMSO- d_6) δ 12.23 (s, 1 H, CO₂H), 7.89 (d, J = 7.7 Hz, 1 H, ArH), 7.46 (t, J = 7.6 Hz, 1 H, ArH), 7.36 (t, J = 7.6 Hz, 1 H, ArH), 7.09 (d, J = 7.5 Hz, 1 H, ArH), 3.76 (s, 3 H, OCH₃), 3.69 (s, 6 H, OCH₃ \times 2), 3.48 (d, J = 17.0 Hz, 1 H, one proton of CH₂), 3.18 (d, J = 17.0 Hz, 1 H, one proton of CH₂), 2.96 (d, J = 15.7 Hz, 1 H, one proton of CH₂), 2.89 $(d, J = 15.2 \text{ Hz}, 1 \text{ H}, \text{ one proton of CH}_2), 1.67-1.55 (m, 1 \text{ H}, \text{ one proton of CH}_2), 1.46$ (s, 3 H, CH₃), 1.41-1.31 (m, 1 H, one proton of CH₂), 0.04 (t, J = 7.4 Hz, 3 H, CH₃);

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 172.3, 171.8, 167.2, 151.8, 140.6, 139.5, 132.8, 132.2, 130.4, 129.9, 129.7, 128.4, 127.5, 56.0, 52.9, 52.8, 52.0, 40.9, 37.0, 27.9, 18.4, 10.6; MS (EI) (m/z) (%) 430 (M⁺, 10.68), 369 (100); IR (neat, cm⁻¹) 3500-2300, 1718, 1680, 1596, 1483, 1434, 1375, 1256, 1199, 1171, 1137, 1082, 1049; HRMS calcd for $C_{23}H_{26}O_8$ (M⁺): 430.1628; found: 430.1623.

4. Ni(cod)₂-catalyzed reaction of 1a with carbon dioxide and ZnⁿBu₂.

(1) preparation of (*E*,*Z*)-2c (ct-7-55).

Typical procedure III: To a 50 mL flame-dried Schlenk tube was added $Ni(cod)_2$ (2.8 mg, 0.01 mmol) inside a glove box. Compound **1a** (356.8 mg, 1.0 mmol), DMSO (10 mL) and Zn^nBu_2 (1.0 M in hexane, 3.0 mL, 3.0 mmol) were sequentially added under argon outside the glove box. The hexane was then removed by applying a vaccum for 2 min. A balloon of CO₂ (about 1 L) was then placed on the tube with a needle to fulfill the tube with CO₂. Toluene (3 mL) was added to the tube with a syringe. Then the Schlenk tube was placed in an oil bath pre-heated at 90 °C. After being vigorously stirred for 3 h, the reaction was complete as monitored by TLC. HCl (3 M, 10 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (10 mL × 3) and the combined organic layer was washed with brine (10 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo.

To the crude product were added MeOH (1 mL) and Et₂O (4 mL). To the resulting mixture was dropwise added TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) with a syringe. After being stirred for 1 h at room temperature, the reaction was complete as monitored by TLC. The reaction mixture was concentrated to afford a mixture of (*E*,*Z*)-2c, (*E*,*Z*)-3c, and (*Z*,*Z*)-3c. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*,*Z*)-2c (74%), (*E*,*Z*)-3c (4%), and (*Z*,*Z*)-3c (3%)). (*E*,*Z*)-2c was obtained via column

chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 6/1) to afford 340.8 mg of impure product, which was then recrystallized (petroleum ether/dichloromethane = 20/1) to afford 281.5 mg of pure (E,Z)-2c (60%) as a white solid: m.p. 122-123 °C (petroleum ether/dichloromethane); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.7 Hz, 1 H, ArH), 7.40 (t, J = 7.4 Hz, 1 H, ArH), 7.31 (t, J = 7.4 Hz, 1 H, ArH), 7.12 (d, J = 7.7 Hz, 1 H, ArH), 3.83 (s, 3 H, OCH₃), 3.75 (s, 6 H, $OCH_3 \times 2$), 3.62 (s, 3 H, OCH_3), 3.57 (d, J = 17.1 Hz, 1 H, one proton of CH_2), 3.49 (d, J = 17.1 Hz, 1 H, one proton of CH₂), 3.07 (d, J = 14.9 Hz, 1 H, one proton of CH₂), 2.92 (d, J = 15.1 Hz, 1 H, one proton of CH₂), 1.78-1.67 (m, 1 H, one proton of CH₂), 1.50 (s, 3 H, CH₃), 1.04-0.78 (m, 4 H, CH₂ \times 2), 0.68 (t, J = 6.9 Hz, 3 H, CH₃), 0.46-0.35 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.7, 167.6, 167.1, 149.8, 141.0, 137.7, 132.7, 132.0, 130.3, 130.2, 129.2, 128.7, 127.2, 56.0, 52.8, 52.7, 51.8, 51.4, 40.7, 37.0, 34.7, 28.4, 22.3, 18.7, 13.6; MS (EI) (m/z) (%) 472 (M⁺, 13.37), 415 (100); IR (neat, cm⁻¹) 2958, 2927, 1729, 1711, 1603, 1434, 1380, 1280, 1248, 1210, 1172, 1150, 1125, 1107, 1085, 1051; Anal. calcd for C₂₆H₃₂O₈ (%): C 66.09, H 6.83; found: C 65.87, H 6.75.

(2) preparation of (*E*,*E*)-**2m** (ct-7-74).

Following **Typical procedure III**, the reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1f** (427.3 mg, 1.0 mmol), $Zn^n Bu_2$ (1.0 M in hexane, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO and 3 mL of toluene afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (E,E)-2m, (E,E)-3m, and (Z,E)-3m. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((E,E)-2m (44%), (E,E)-3m

(2%), and (*Z*,*E*)-**3m** (3%)). (*E*,*E*)-**2m** (195.2 mg, 36%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, *J* = 7.5, 1.8 Hz, 1 H, ArH), 7.39-7.30 (m, 2 H, ArH), 7.09 (dd, *J* = 7.4, 1.6 Hz, 1 H, ArH), 3.83 (s, 3 H, OCH₃), 3.85-3.76 (m, 2 H, OCH₂), 3.749 (s, 3 H, OCH₃), 3.745 (s, 3 H, OCH₃), 3.62 (s, 3 H, OCH₃), 3.57 (d, *J* = 17.6 Hz, 1 H, one proton of CH₂), 3.50 (d, *J* = 17.3 Hz, 1 H, one proton of CH₂), 3.16 (d, *J* = 14.9 Hz, 1 H, one proton of CH₂), 2.93 (d, *J* = 14.9 Hz, 1 H, one proton of CH₂), 2.02 (s, 3 H, CH₃), 1.81-1.72 (m, 1 H, one proton of CH₂), 1.05-0.81 (m, 4 H, CH₂ × 2), 0.69 (t, *J* = 7.0 Hz, 3 H, CH₃), 0.57-0.46 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.7, 170.8, 167.4, 167.1, 149.5, 140.6, 136.7, 133.2, 132.6, 132.0, 130.4, 129.6, 129.2, 127.6, 62.5, 56.1, 52.9, 52.8, 51.9, 51.6, 40.0, 37.0, 32.9, 31.1, 28.8, 22.3, 20.9, 13.7; MS (EI) (m/z) (%) 544 (M⁺, 24.01), 457 (100); IR (neat, cm⁻¹) 1720, 1601, 1570, 1434, 1373, 1239, 1171, 1127, 1082, 1044; HRMS calcd for C₂₉H₃₆O₁₀ (M⁺): 544.2308; found: 544.2314.

(3) preparation of (*E*,*Z*)-2p (ct-9-84).

Following **Typical procedure I**, the reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1h** (383.7 mg, 1.0 mmol), $Zn^n Bu_2$ (1.0 M in toluene, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (E,Z)-2**p**, (E,Z)-3**p**, and (Z,Z)-3**p**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((E,Z)-2**p** (67%), (E,Z)-3**p** (6%), and (Z,Z)-3**p** (5%)). (E,Z)-2**p** was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 15/1) to afford 330.7 mg of impure product, which was then recrystallized (petroleum ether (2 mL)) to afford 229.7 mg of pure

(*E*,*Z*)-**2p** (46%) as a white solid: m.p. 94-96 °C (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, *J* = 7.8, 1.2 Hz, 1 H, ArH), 7.38 (td, *J* = 7.5, 1.4 Hz, 1 H, ArH), 7.30 (td, *J* = 7.5, 1.4 Hz, 1 H, ArH), 7.10 (dd, *J* = 7.6, 1.0 Hz, 1 H, ArH), 5.15 (hept, *J* = 6.3 Hz, 1 H, OCH), 3.74 (s, 6 H, OCH₃ × 2), 3.61 (s, 3 H, OCH₃), 3.59 (d, *J* = 20.6 Hz, 1 H, one proton of CH₂), 3.50 (d, *J* = 17.1 Hz, 1 H, one proton of CH₂), 3.08 (d, *J* = 15.0 Hz, 1 H, one proton of CH₂), 2.90 (d, *J* = 14.9 Hz, 1 H, one proton of CH₂), 1.76-1.65 (m, 1 H, one proton of CH₂), 1.50 (s, 3 H, CH₃), 1.324 (d, *J* = 6.3 Hz, 3 H, CH₃), 1.317 (d, *J* = 6.2 Hz, 3 H, CH₃), 1.13-1.03 (m, 1 H, one proton of CH₂), 1.00-0.78 (m, 3 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.8, 167.6, 166.1, 149.7, 141.1, 137.7, 132.7, 131.9, 130.29, 130.26, 129.9, 128.9, 127.2, 68.6, 56.1, 52.8, 52.7, 51.4, 40.7, 37.2, 34.8, 28.3, 22.5, 21.8, 21.7, 18.8, 13.8; MS (EI) (m/z) (%) 500 (M⁺, 26.34), 443 (100); IR (neat, cm⁻¹) 1745, 1711, 1604, 1452, 1436, 1382, 1344, 1287, 1272, 1247, 1216, 1171, 1131, 1106, 1086, 1058, 1011; Anal. calcd for C₂₈H₃₆O₈ (%): C 67.18, H 7.25; found: C 67.16, H 7.23.

(4) preparation of (*E*,*Z*)-2r (ct-9-85).

Following **Typical procedure I**, the reaction of $Ni(cod)_2$ (2.8 mg, 0.01 mmol), **1i** (397.6 mg, 1.0 mmol), $Zn^n Bu_2$ (1.0 M in toluene, 3.0 mL, 3.0 mmol), and carbon dioxide (about 1 L) in 10 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 2.0 mL, 4.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O afforded a mixture of (E,Z)-2**r**, (E,Z)-3**r**, and (Z,Z)-3**r**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((E,Z)-2**r** (66%), (E,Z)-3**r** (7%), and (Z,Z)-3**r** (5%)). Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 8/1) afforded 341.0 mg of impure product, which was then recrystallized (petroleum ether (1 mL) for the first round to afford 212.4 mg of pure

(E,Z)-2r; the mother liquid was concentrated and submitted to the second round (petroleum ether (4 mL)) to afford 50.0 mg of (E,Z)-2r) as a white solid: total 262.4 mg (51%); m.p. 83-84 °C (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 7.8, 1.0 Hz, 1 H, ArH), 7.35 (td, J = 7.5, 1.3 Hz, 1 H, ArH), 7.28 (td, J = 7.6, 1.2 Hz, 1 H, ArH), 7.09 (d, J = 7.4 Hz, 1 H, ArH), 3.741 (s, 3 H, OCH₃), 3.737 (s, 3 H, OCH_3), 3.61 (s, 3 H, OCH_3), 3.59 (d, J = 22.4 Hz, 1 H, one proton of CH_2), 3.50 (d, J= 17.3 Hz, 1 H, one proton of CH_2), 3.09 (d, J = 14.9 Hz, 1 H, one proton of CH_2), 2.90 (d, J = 15.1 Hz, 1 H, one proton of CH₂), 1.76-1.67 (m, 1 H, one proton of CH₂), 1.54 (s, 9 H, $CH_3 \times 3$), 1.51 (s, 3 H, CH_3), 1.25-1.15 (m, 1 H, one proton of CH_2), 1.02-0.81 (m, 3 H, one proton of $CH_2 + CH_2$), 0.66 (t, J = 6.9 Hz, 3 H, CH_3), 0.18-0.04 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.8, 167.5, 165.9, 149.5, 140.7, 137.8, 132.6, 131.5, 131.1, 130.25, 130.17, 129.0, 127.1, 81.3, 56.0, 52.8, 52.6, 51.4, 40.7, 37.2, 34.8, 28.2, 27.8, 22.6, 18.8, 13.8; MS (EI) (m/z) (%) 514 (M⁺, 14.2), 401 (100); IR (neat, cm⁻¹) 1727, 1711, 1640, 1601, 1453, 1436, 1391, 1367, 1290, 1248, 1205, 1168, 1125, 1080, 1156; Anal. calcd for C₂₉H₃₈O₈ (%): C 67.68, H 7.44; found: C 67.67, H 7.43.

5. Selective removal of *tert*-butyl group of (*E*,*Z*)-2q (ct-7-101).

To a 25 mL round bottom flask was added (*E*,*Z*)-**2q** (77.3 mg, 0.16 mmol) and 1.6 mL of HCO₂H (98%). After being stirred for 2 h at room temperature, the mixture was concentrated to afford (*E*,*Z*)-**5q** (67.2 mg, 98%) via column chromatography on silica gel (eluent: dichloromethane/methanol = 30/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 10.47 (bs, 1 H, CO₂H), 8.12 (d, *J* = 7.9 Hz, 1 H, ArH), 7.44 (t, *J* = 7.5 Hz, 1 H, ArH), 7.34 (t, *J* = 7.6 Hz, 1 H, ArH), 7.16 (d, *J* = 7.7 Hz, 1 H, ArH), 3.76 (s, 3 H, OCH₃), 3.75 (s, 3 H, OCH₃), 3.64 (s, 3 H, OCH₃), 3.59 (d, *J* = 17.1 Hz, 1 H, one proton of CH₂), 3.46 (d, *J* = 16.8 Hz, 1 H, one proton of CH₂), 3.07 (d, *J* = 15.2 Hz, 1

H, one proton of CH₂), 2.94 (d, J = 15.3 Hz, 1 H, one proton of CH₂), 1.79-1.67 (m, 1 H, one proton of CH₂), 1.52 (s, 3 H, CH₃), 1.39-1.27 (m, 1 H, one proton of CH₂), 0.18 (t, J = 7.5 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 172.1, 171.8, 167.6, 150.2, 141.7, 138.9, 133.2, 132.9, 131.2, 129.8, 128.64, 128.63, 127.5, 56.0, 52.9, 52.8, 51.5, 40.8, 37.0, 27.9, 18.3, 10.5; MS (EI) (m/z) (%) 430 (M⁺, 23.57), 401 (100); IR (neat, cm⁻¹) 3262, 2953, 1734, 1711, 1595, 1568, 1484, 1434, 1378, 1247, 1222, 1147, 1109, 1078, 1049, 1009; HRMS calcd for C₂₃H₂₆O₈ (M⁺): 430.1628; found: 430.1622.

6. Control experiments.

(1) Reaction of 1a' under the standard conditions (ct-9-136).

Following **Typical Procedure I**, the reaction of $Ni(cod)_2(1.4 \text{ mg}, 0.005 \text{ mmol})$, **1a'** (178.1 mg, 0.5 mmol), ZnEt₂ (1.5 M in toluene, 0.5 mL, 0.75 mmol), and carbon dioxide (about 1 L) in 5 mL of DMSO afforded the crude product.

The crude product was then reacted with TMSCHN₂ (2.0 M in hexane, 1.0 mL, 2.0 mmol) in 1 mL of MeOH and 4 mL of Et₂O to afford a mixture of (*E*,*Z*)-**A** and **B**. The NMR yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard ((*E*,*Z*)-**A** (44%) and **B** (2%)). (*E*,*Z*)-**A**² (80.2 mg, 39%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) as a white solid: m.p. 126-127 °C (petroleum ether/ethyl acetate) (reported:² 126-127 °C (petroleum ether/ethyl acetate)); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.9 Hz, 2 H, ArH), 7.35 (d, *J* = 7.9 Hz, 2 H, ArH), 6.72 (s, 1 H, CH=), 3.91 (s, 3 H, OCH₃), 3.71 (s, 9 H, OCH₃ × 3), 3.33 (s, 2 H, CH₂), 3.09 (s, 2 H, CH₂), 2.00 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 170.9, 166.6, 141.4, 140.8, 138.4, 129.4, 128.8, 128.5, 126.1, 123.1, 57.0, 52.9, 52.0, 51.8, 39.3, 37.9, 18.3; MS (EI) (m/z) 416 (M⁺, 34.01), 297 (100); IR (neat, cm⁻¹) 1743, 1727, 1704, 1637, 1600,

(2) Reaction of **1a** without carbon dioxide-quenched with HCl. (ct-9-137)

To a 25 mL flame-dried Schlenk tube was added Ni(cod)₂ (0.8 mg, 0.003 mmol) inside a glove box. Compound **1a** (106.5 mg, 0.3 mmol) and DMSO (3 mL) were sequentially added under argon outside the glove box. Then the Schlenck tube was placed in an oil bath pre-heated at 40 °C. To the mixture was added ZnEt₂ (1.5 M in toluene, 0.3 mL, 0.45 mmol) with a syringe. After being stirred for 5 min, the reaction was complete as monitored by TLC. HCl (3 M, 5 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (5 mL × 3) and the combined organic layer was washed with brine (10 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo to afford a mixture of (*E*,*Z*)-**3a** and (*Z*,*Z*)-**3a**. The NMR yields were determined by ¹H NMR analysis of this crude products using CH₂Br₂ as the internal standard (84% ((*E*,*Z*)-**3a**) and 4% ((*Z*,*Z*)-**3a**), respectively). A mixture of (*E*,*Z*)-**3a** and (*Z*,*Z*)-**3a** (100.8 mg, 87%, (*E*,*Z*)-**3a**/(*Z*,*Z*)-**3a** = 20/1) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) as an oil.

(E,Z)-**3a**: ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.6 Hz, 1 H, ArH), 7.47 (t, J = 7.3 Hz, 1 H, ArH), 7.35 (d, J = 7.7 Hz, 1 H, ArH), 7.28 (t, J = 7.6 Hz, 1 H, ArH), 7.08 (s, 1 H, CH=), 3.84 (s, 3 H, OCH₃), 3.66 (s, 6 H, OCH₃ × 2), 3.06-2.99 (m, 4 H, CH₂ × 2), 2.43 (q, J = 7.4 Hz, 2 H, CH₂), 1.79 (s, 3 H, CH₃), 1.14 (t, J = 7.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 167.6, 139.3, 138.7, 135.4, 131.4, 130.9, 130.4, 130.2, 129.1, 126.3, 124.0, 57.3, 52.5, 51.8, 39.4, 38.4, 28.5, 20.6, 12.8; GC-MS (GC condition: injector: 260 °C; column: DB-5MS column 30 m × 0.25 mm,

temperature programming: 15 °C/min to 285 °C, 285 °C (15 min); detector: 150 °C) (70 ev, EI) (m/z) (%) (retention time: 10.9 min): 386 (M⁺, 29.7), 235 (100); HRMS calcd for $C_{22}H_{26}O_6$ (M⁺): 386.1729; found: 386.1728.

The following signals are discernible for (*Z*,*Z*)-**3a**: ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, *J* = 7.3 Hz, 1 H, ArH), 6.69 (s, 1 H, CH=), 3.88 (s, 3 H, OCH₃), 3.75 (s, 6 H, OCH₃ × 2), 1.57-1.49 (m, 5 H, CH₃+CH₂), 0.34 (t, *J* = 7.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 167.3, 141.1, 138.0, 134.1, 131.8, 130.7, 127.7, 127.5, 126.2, 124.1, 56.3, 52.6, 51.7, 43.3, 37.9, 28.3, 17.8, 10.6; GC-MS (GC condition: injector: 260 °C; column: DB-5MS column 30 m × 0.25 mm, temperature programming: 15 °C/min to 285 °C, 285 °C (15 min); detector: 150 °C) (70 ev, EI) (m/z) (%) (retention time: 10.5 min): 386 (M⁺, 20.38), 235 (100); HRMS calcd for C₂₂H₂₆O₆ (M⁺): 386.1729; found: 386.1725.

IR (for the mixture of (*E*,*Z*)-**3a** and (*Z*,*Z*)-**3a**) (neat, cm⁻¹) 2955, 1723, 1596, 1567, 1477, 1433, 1290, 1244, 1201, 1165, 1126, 1074.

To a 25 mL flame-dried Schlenk tube was added Ni(cod)₂ (0.8 mg, 0.003 mmol) inside a glove box. Compound **1a** (106.3 mg, 0.3 mmol) and DMSO (3 mL) were sequentially added under argon outside the glove box. Then the Schlenck tube was placed in an oil bath pre-heated at 40 °C. To the mixture was added ZnEt₂ (1.5 M in toluene, 0.3 mL, 0.45 mmol) with a syringe. After being stirred for 5 min, the reaction was complete as monitored by TLC. D₂O (1.0 mL) was added to quench the reaction followed by the addition of HCl (3 M, 5 mL). The aqueous layer was extracted with EtOAc (5 mL \times 3) and the combined organic layer was washed with brine (10 mL),

dried over anhydrous MgSO₄, filtered and concentrated in vacuo to afford a mixture of (E,Z)-**3a**-D and (Z,Z)-**3a**-D. The NMR yields were determined by ¹H NMR analysis of this crude products using CH₂Br₂ as the internal standard (84% ((E,Z)-**3a**-D) and 4% ((Z,Z)-**3a**-D), respectively). A mixture of (E,Z)-**3a**-D and (Z,Z)-**3a**-D (99.2 mg, 86%, (E,Z)-**3a**-D/(Z,Z)-**3a**-D = 20/1, D-incorporation: (E,Z)-**3a**-D 81% and (E,Z)-**3a**-D 97%) was obtained via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) as an oil.

(E,Z)-**3a**-D: ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.7 Hz, 1 H, ArH), 7.47 (t, J = 7.6 Hz, 1 H, ArH), 7.36 (d, J = 7.7 Hz, 1 H, ArH), 7.28 (t, J = 7.5 Hz, 1 H, ArH), 3.84 (s, 3 H, OCH₃), 3.66 (s, 6 H, OCH₃ × 2), 3.06-3.00 (m, 4 H, CH₂ × 2), 2.42 (q, J = 7.4 Hz, 2 H, CH₂), 1.79 (s, 3 H, CH₃), 1.14 (t, J = 7.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 167.6, 139.2, 138.6, 135.4, 131.4, 130.9, 130.3, 130.2, 129.1, 126.3, 123.6 (t, $J_{C-D} = 24.6$ Hz), 57.25, 52.5, 51.8, 39.34, 38.4, 28.4, 20.6, 12.8; GC-MS (GC condition: injector: 260 °C; column: DB-5MS column 30 m × 0.25 mm, temperature programming: 15 °C/min to 285 °C, 285 °C (15 min); detector: 150 °C) (70 ev, EI) (m/z) (%) (retention time: 10.9 min): 387 (M⁺ (C₂₂H₂₅DO₆), 40.24), 386 (M⁺ (C₂₂H₂₆O₆), 5.81), 236 (100); HRMS calcd for C₂₂H₂₅DO₆ (M⁺): 387.1792; found: 387.1790.

The following signals are discernible for (E,Z)-**3a**: ¹H NMR (400 MHz, CDCl₃) δ 7.08 (s, 0.19 H, CH=); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 138.7, 123.9, 57.23, 39.37.

The following signals are discernible for (*Z*,*Z*)-**3a**-D: ¹H NMR (400 MHz, CDCl₃) 7.23-7.18 (m, 1 H, ArH), 6.70 (s, 0.03 H, CH=), 3.88 (s, 3 H, OCH₃), 3.75 (s, 6 H, OCH₃ × 2), 1.57-1.48 (m, 5 H, CH₃+CH₂), 0.35 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 167.3, 141.0, 137.9, 134.1, 131.8, 130.7, 130.1, 127.7, 127.5, 126.2, 56.3, 52.6, 51.7, 43.2, 37.8, 28.3, 17.8, 10.6; GC-MS (GC condition: injector: 260 °C; column: DB-5MS column 30 m × 0.25 mm, temperature programming: 15 °C/min to 285 °C, 285 °C (15 min); detector: 150 °C) (70 ev, EI) (m/z) (%) (retention time: 10.5 min): 387 (M⁺ (C₂₂H₂₅DO₆), 32.09), 386 (M⁺ (C₂₂H₂₆O₆), 3.95), 236 (100); HRMS calcd for C₂₂H₂₅DO₆ (M⁺): 387.1792; found: 387.1795.

IR (for the mixture of (*E*,*Z*)-**3a**-D and (*Z*,*Z*)-**3a**-D) (neat, cm⁻¹) 1731, 1711, 1639, 1595, 1564, 1476, 1433, 1377, 1273, 1243, 1198, 1161, 1112, 1092, 1074.

(4) Monitoring the yields of (E,Z)-**3a** and (Z,Z)-**3a** vs. time at 40 °C without CO₂.

To a 25 mL flame-dried Schlenk tube was added Ni(cod)₂ (0.003 mmol) inside a glove box. Compound **1a** (0.3 mmol) and DMSO (3 mL) were sequentially added under argon outside the glove box. Then the Schlenck tube was placed in an oil bath pre-heated at 40 °C. To the mixture was added ZnEt₂ (1.5 M in toluene, 0.3 mL, 0.45 mmol) with a syringe. After being stirred for the time specified, HCl (3 M, 5 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (5 mL × 3) and the combined organic layer was washed with brine (10 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo. The yields of (*E*,*Z*)-**3a**, (*Z*,*Z*)-**3a**, and the recovery of **1a** were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard. Samples were taken for analysis at 1 min, 5 min, 10 min, 20 min, 40 min, and 60 min.

Time (min)	Yield of	Yield of	Decovery of 1a	(E, 7) 2 2 (7, 7) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	(<i>E</i> , <i>Z</i>)- 3 a	(<i>Z</i> , <i>Z</i>)- 3 a	Recovery of Ta	(<i>Z</i> , <i>Z</i>)- 3 a	(<i>E</i> , <i>Z</i>)- 3 a/(<i>Z</i> , <i>Z</i>)- 3 a	
1	28	1	58	28.0		
5	84	4	0	21.0		
10	83	5	0	16.6		
20	81	9	0	9.0		
40	78	15	0	5.2		
60	72	19	0	3.8		

(5) Monitoring the yields of (E,Z)-3a, (Z,Z)-3a, and (E,Z)-4a vs. time at 40 °C with CO₂.

To a 25 mL flame-dried Schlenk tube was added Ni(cod)₂ (0.003 mmol) inside a glove box. Compound **1a** (0.3 mmol) and DMSO (3 mL) were sequentially added under argon outside the glove box. The Schlenk tube was then frozen with a liquid nitrogen bath. The argon inside the tube was completely replaced with CO₂ by using a balloon of CO₂ (about 1 L). The Schlenk tube was allowed to stand until the temperature was above 0 °C. Then the Schlenk tube was placed in an oil bath pre-heated at 40 °C. After completely thawed, to the mixture was added ZnEt₂ (1.5 M in toluene, 0.3 mL, 0.45 mmol) with a syringe. After being stirred for the time specified, HCl (3 M, 5 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (5 mL × 3) and the combined organic layer was washed with brine (10 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo. The yields of (*E*,*Z*)-**3a**, (*Z*,*Z*)-**3a**, (*E*,*Z*)-**4a**, and the recovery of **1a** were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard. Samples were taken for analysis at 1 min, 5 min, 10 min, 20 min, 40 min, and 60 min.

Time	Yield of	Yield of	Yield of	Recovery of	(<i>E</i> , <i>Z</i>)- 3 a/(<i>Z</i> , <i>Z</i>)- 3 a
(min)	(<i>E</i> , <i>Z</i>)- 3 a	(<i>Z</i> , <i>Z</i>)- 3 a	(<i>E</i> , <i>Z</i>)-4a	1 a	
1	18	1	0	73	18.0
5	84	2	1	0	42.0
10	84	3	2	0	28.0
20	81	3	5	0	27.0
40	78	3	7	0	26.0
60	77	3	8	0	25.7

(6) Monitoring the yields of (E,Z)-**3a**, (Z,Z)-**3a**, and (E,Z)-**4a** vs. time at 90 °C with CO₂.

To a 25 mL flame-dried Schlenk tube was added Ni(cod)₂ (0.003 mmol) inside a glove box. Compound **1a** (0.3 mmol) and DMSO (3 mL) were sequentially added under argon outside the glove box. The Schlenk tube was then frozen with a liquid nitrogen bath. The argon inside the tube was completely replaced with CO₂ by using a balloon of CO₂ (about 1 L). The Schlenk tube was allowed to stand until the temperature was above 0 °C. Then the Schlenk tube was placed in an oil bath pre-heated at 90 °C. After completely thawed, to the mixture was added ZnEt₂ (1.5 M

in toluene, 0.3 mL, 0.45 mmol) with a syringe. After being stirred for the time specified, HCl (3 M, 5 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (5 mL \times 3) and the combined organic layer was washed with brine (10 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo. The yields of (*E*,*Z*)-**3a**, (*Z*,*Z*)-**3a**, and (*E*,*Z*)-**4a** were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard. Samples were taken for analysis at 1 min, 5 min, 10 min, 15 min and 20 min.

Time	Yield of	Yield of	Yield of	$(E, 7) 2_{2} / (7, 7) 2_{2}$	
(min)	(<i>E</i> , <i>Z</i>)- 3 a	(<i>Z</i> , <i>Z</i>)-3a	(<i>E</i> , <i>Z</i>)-4a	(E,Z)-3a/ (Z,Z) -3a	
1	66	22	7	3.0	
5	32	16	39	2.0	
10	21	10	54	2.1	
15	15	7	64	2.1	
20	7	4	74	1.8	

References

Thorson, M. K.; Klinkel, K. L.; Wang, J.; Williams, T. J. Eur. J. Inorg. Chem.
2009, 295.

(2) Cao, T.; Ma, S. Org. Lett. 2016, 18, 1510.

.

