Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supporting Information

## Rhodium-catalyzed Regiospecific C–H *ortho*-Phenylation of Benzoic Acids with Cu/Air as Oxidant

Shiguang Li,<sup>a</sup> Guojun Deng,<sup>a</sup> Feifei Yin,<sup>a</sup> Chao-Jun Li<sup>b,\*</sup> Hang Gong<sup>a,\*</sup>

<sup>a</sup> The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 P. R. China. Fax: (+86)-731-5829-2251; phone: (+86)-731-5829-2251; e-mail: hgong@xtu.edu.cn

<sup>b</sup> Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8 (Canada) Fax: (+1)-514-398-3797; phone: (+1)-514-398-8457; e-mail: cj.li@mcgill.ca

## **Table of Contents**

| Part I: Experimental section                           | S1  |
|--------------------------------------------------------|-----|
| General information                                    | S1  |
| Typical procedure for the synthesis of <b>2a</b>       | S2  |
| Optimization results of Rh-catalyzed ortho-phenylation | S3  |
| Some failures coupling reactions                       | S4  |
| Characterization of products                           |     |
| References                                             | S9  |
| Part II: NMR spectra                                   | S10 |

## **Part I: Experimental section**

#### **General Information:**

All reactions were carried out in air and all reagents were weighed and handled in air unless otherwise stated. All reagents were obtained from commercial sources and used without further purification unless otherwise stated. Column chromatography was performed on silica gel (200-300 mesh) and visualized with ultraviolet light. Ethyl acetate and petroleum ether was used as eluents. <sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F NMR spectra were recorded on a 400 MHz, 100 MHz and 377 MHz NMR spectrometer respectively. NMR spectrometer as solutions in CDCl<sub>3</sub> unless otherwise stated. IR spectra were recorded on a New Fourier transform infrared spectroscopy. HRMS were made by means of ESI. Melting points (mp) were measured on micro melting point apparatus and uncorrected.

#### Typical procedure for the synthesis of 2a (Table 2):

$$R \longrightarrow CO_2H + NaBPh_4 \xrightarrow{[Rh(nbd)Cl]_2 10 \text{ mol}\%, CuBr_2 10 \text{ mol}\%,}_{KF 4 \text{ equiv, PhCl 1.2 mL, 150 °C, air, 24h}} R$$

COU

A solution of aromatic acid **1a** (27.2 mg, 0.2 mmol), NaBPh<sub>4</sub> (0.27 g, 0.8 mmol), KF (46 mg, 0.8 mmol), [Rh(nbd)Cl]<sub>2</sub> (9.2 mg, 0.02 mmol) and CuBr<sub>2</sub> (4.5 mg, 0.02 mmol) in chlorobenzene (1.2 mL) was stirred in a sealed tube under air at 150 °C for 24 h. The reaction mixture was then cooled to room temperature and acidified by dilute aqueous HCl to pH<3, and then the solvent was evaporated in vacuo. The residue was purified by preparative thin-layer chromatography (TLC) on silica gel with petroleum ether and ethyl acetate as eluent to give the pure product **2a**.

#### Half-gram-scale synthesis of 2a:

A solution of o-Toluic acid (3.7 mmol),  $[Rh(nbd)Cl]_2$  (27 mg, 1.6 mol%), Sodium tetraphenylboron (14.8 mmol), CuBr<sub>2</sub> (4.5 mg, 0.37 mmol)and activated KF (46.4 mg, 14.8 mmol) in distilled 4-chlorotoluene (20 mL) was stirred in a sealed tube at 150 °C for 72 h under an atmosphere of air. The reaction mixture was then cooled to room temperature and acidified by dilute HCl to PH<3, and then the solvent was evaporated in vacuo. The residue was purified by preparative thin-layer chromatography (TLC) on silica gel with ethyl acetate and petroleum ether containing appropriate quantity of acetic acid to give the pure product.

## Optimization results of Rh-catalyzed ortho-phenylation:

Table 1S Optimization of Rh-catalyzed ortho-phenylation of benzoic acida



| Entry          | Catalyst                              | Cu-salt              | Solvent | NaBPh <sub>4</sub> | A 11'/'                        | Т   | Yield               |
|----------------|---------------------------------------|----------------------|---------|--------------------|--------------------------------|-----|---------------------|
|                |                                       |                      |         | /equiv.            | Additive                       | /ºC | /%                  |
| 1 <sup>b</sup> | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | KF                             | 150 | 75                  |
| 2 <sup>b</sup> | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | KF                             | 130 | 20                  |
| 3°             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | KF                             | 150 | 82                  |
| 4              | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | KF                             | 150 | 82(71) <sup>d</sup> |
| 5 <sup>e</sup> | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | KF                             | 150 | 46                  |
| 6              | (Ph <sub>3</sub> P) <sub>3</sub> RhCl | CuBr <sub>2</sub>    | PhCl    | 4                  | KF                             | 150 | 22                  |
| 7              | $RhCl_3 \cdot 3H_2O$                  | CuBr <sub>2</sub>    | PhCl    | 4                  | KF                             | 150 | 8                   |
| 8              | Rh(CO)2acac                           | CuBr <sub>2</sub>    | PhCl    | 4                  | KF                             | 150 | 54                  |
| 9              | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 3                  | KF                             | 150 | 57                  |
| 10             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 0                  | KF                             | 150 | trace               |
| 11             | [Rh(nbd)Cl] <sub>2</sub>              | CuI                  | PhCl    | 4                  | KF                             | 150 | 41                  |
| 12             | [Rh(nbd)Cl] <sub>2</sub>              | CuCl                 | PhCl    | 4                  | KF                             | 150 | 30                  |
| 13             | [Rh(nbd)Cl] <sub>2</sub>              | $CuCl_2{\cdot}2H_2O$ | PhCl    | 4                  | KF                             | 150 | 64                  |
| 14             | [Rh(nbd)Cl] <sub>2</sub>              | CuO                  | PhCl    | 4                  | KF                             | 150 | 22                  |
| 15             | [Rh(nbd)Cl] <sub>2</sub>              | $CuSO_4 \cdot 5H_2O$ | PhCl    | 4                  | KF                             | 150 | 42                  |
| 16             | [Rh(nbd)Cl] <sub>2</sub>              | Cu(OAc) <sub>2</sub> | PhCl    | 4                  | KF                             | 150 | 35                  |
| 17             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | LiF                            | 150 | 19                  |
| 18             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | NaF                            | 150 | 28                  |
| 19             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | NaOAc                          | 150 | 10                  |
| 20             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | KOAc                           | 150 | 43                  |
| 21             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  | K <sub>3</sub> PO <sub>4</sub> | 150 | 31                  |
| 22             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | $H_2O$  | 4                  | KF                             | 150 | 5                   |
| 23             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | Toluene | 4                  | KF                             | 150 | 27                  |
| 24             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | DMF     | 4                  | KF                             | 150 | 33                  |
| 25             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | DMSO    | 4                  | KF                             | 150 | 46                  |
| 26             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | NMP     | 4                  | KF                             | 150 | 42                  |
| 27             |                                       | CuBr <sub>2</sub>    | PhCl    | 4                  | KF                             | 150 | trace               |
| 28             | [Rh(nbd)Cl] <sub>2</sub>              |                      | PhCl    | 4                  | KF                             | 150 | 14                  |
| 29             | [Rh(nbd)Cl] <sub>2</sub>              | CuBr <sub>2</sub>    | PhCl    | 4                  |                                | 150 | 25                  |

<sup>a</sup> Unless otherwise noted, all reactions were carried out using 0.1 mmol **1a**, 10 mol% [Rh], 10 mol % [Cu] and 1 mL solvent in a sealed tube under air for 24h. Yields are based on <sup>1</sup>H NMR using CH<sub>3</sub>NO<sub>2</sub> as internal standard. <sup>b</sup> 4 equiv. of CuBr<sub>2</sub> was used and reaction was carried out under Argon. <sup>c</sup> 20 mol % CuBr<sub>2</sub> was used. <sup>d</sup> Isolated yield.<sup>e</sup> 5 mol % [Rh(nbd)Cl]<sub>2</sub> was used.

## Some failures coupling reactions

Table 2S Some failures coupling reactions<sup>a</sup>



<sup>a)</sup> All reactions were carried out with aromatic acid (0.2 mmol), NaBPh<sub>4</sub> (4 equiv.), [Rh(nbd)Cl]<sub>2</sub> (10 mol %), CuBr<sub>2</sub> (10 mol %), KF (4 equiv.) and 1.2 mL PhCl in a sealed tube under air at 150 °C for 24 h. All yields are detected by GC-MS.

#### **Characterization of products:**



**2a** White solid; Yield 86%; Mp 132-134 °C [lit<sup>1</sup> mp 133-135°C]; IR (neat)  $v_{max}$  3057, 2917, 2849, 2627, 1682, 1461, 1133, 1064, 1000, 759, 696 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.35-7.40 (m, 6H), 7.23 (m, 2H), 2.45 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 174.5, 140.7, 140.2, 135.5, 132.2, 129.7, 129.2, 128.4 (2C), 127.6, 127.5, 20.0; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>13</sub>O<sub>2</sub> 213.0910, found [M+H]<sup>+</sup> 213.0912.



**2b** White solid; Yield 85%; Mp 143-146 °C; IR (neat)  $v_{max}$  3057, 2921, 2852, 2644, 2360, 1687, 1566, 1417, 1289, 1163, 769, 705 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.45-7.33 (m, 5H), 7.25 (d, *J* = 3 Hz, 1H), 7.13 (d, *J* = 8 Hz, 1H), 2.34 (s, 3H), 2.32 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 175.6, 140.7, 137.5, 136.2, 133.2, 132.7, 131.0, 128.4, 128.3, 127.3, 127.2, 20.0, 16.7; HRMS (ESI) *m/z* calcd for C<sub>15</sub>H<sub>15</sub>O<sub>2</sub> 227.1067, found [M+H]<sup>+</sup> 227.1061.



**2c** White solid; Yield 83%; Mp 133-135 °C [lit<sup>2</sup> mp 134-135°C]; IR (neat)  $v_{max}$  3029, 2972, 2853, 2645, 2361, 1676, 1605, 1576, 1301, 976, 850, 783, 730 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.40-7.33 (m, 5H), 7.04 (s, 1H), 7.02 (s, 1H), 2.41 (s, 3H), 2.36 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 175.4, 140.9, 140.5, 139.9, 135.8, 130.1, 129.3, 128.4, 128.3, 127.5, 21.3, 20.0; HRMS (ESI) *m/z* calcd for C<sub>15</sub>H<sub>15</sub>O<sub>2</sub> 227.1067, found [M+H]<sup>+</sup> 227.1061.



**2d** White solid; Yield 81%; Mp 141-143 °C [lit<sup>3</sup> mp 145°C]; IR (neat)  $v_{max}$  3059, 2919, 2854, 2619, 2525, 1682, 1442, 1425, 1289, 994, 774, 702 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.40-7.33 (m, 3H), 7.23 (m, 3H), 7.13 (d, *J* = 8 Hz, 1H), 2.37 (s, 3H), 2.07 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 174.5, 139.1, 139.0, 133.7, 133.3, 131.9, 131.2, 129.2, 129.1, 128.1, 127.3, 77.4, 77.1, 76.7, 20.2, 19.5; HRMS (ESI) *m/z* calcd for C<sub>15</sub>H<sub>13</sub>O<sub>2</sub> 225.0921, found [M-H]<sup>-</sup> 225.0921.



**2e** White solid; Yield 88%; Mp 186-187 °C; IR (neat)  $v_{max}$  3008, 2844, 2545, 2359, 2341, 1683, 1597, 1457, 1293, 930, 813, 771, 709 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.45-7.32 (m, 5H), 7.20 (d, *J* = 8 Hz, 1H), 6.96 (d, *J* = 8 Hz, 1H), 3.89 (s, 3H), 2.29 (s, 3H); <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD)  $\delta$  = 172.2, 156.8, 140.7, 135.6, 131.2, 128.2, 127.9, 127.8, 126.6, 122.4, 110.4, 54.8, 11.7; HRMS (ESI) *m/z* calcd for C<sub>15</sub>H<sub>13</sub>O<sub>3</sub> 241.0870, found [M-H]<sup>-</sup> 241.0871.



#### MeÓ

**2f** White solid; Yield 78%; Mp 164-166 °C; IR (neat)  $v_{max}$  2978, 2846, 2646, 2541, 2359, 1673, 1598, 1451, 1336, 1280, 1045, 940, 768, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.41-7.34 (m, 5H), 6.75 (s, 1H), 6.72 (d, *J* = 2 Hz, 1H), 3.84 (s, 3H), 2.45 (s, 3H); <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD)  $\delta$  = 172.65, 159.9, 141.6, 141.0, 136.7, 128.1, 127.9, 127.1, 126.8, 114.0, 112.4, 54.4, 18.8; HRMS (ESI) *m/z* calcd for C<sub>15</sub>H<sub>15</sub>O<sub>3</sub> 243.1016, found [M+H]<sup>+</sup> 243.1009.



**2g** White solid; Yield 87%; Mp 106-107 °C [lit<sup>4</sup> mp 108.5-109.5°C]; IR (neat)  $v_{max}$  3196, 2965, 2839, 2659, 2365, 1692, 1587, 1466, 1255, 1114, 1015, 755, 701 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.46-7.37 (m, 6H), 6.96-7.01 (m, 2H), 3.92 (s, 3H).<sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD)  $\delta$  = 173.0, 156.5, 141.4, 139.9, 130.9, 128.4, 128.4, 127.7, 122.3, 122.2, 110.0, 56.2; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>12</sub>NaO<sub>3</sub> 251.0679, found [M+Na]<sup>+</sup> 251.0677.



**2h** White solid; Yield 75%; Mp 134-135 °C; IR (neat)  $v_{max}$  3026, 2943, 2863, 2360, 2342, 1696, 1522, 1428, 1225, 1152, 1074, 1031, 819, 769, 699 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.43-7.31 (m, 5H), 7.19 (d, *J* = 8 Hz, 1H), 7.13 (d, *J* = 8 Hz, 1H), 2.83 (m, 4H), 1.84 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 175.4, 140.6, 137.2, 136.8, 133.9, 132.2, 130.8, 128.4, 128.4, 127.4, 127.0, 29.7, 26.9, 22.9, 22.6; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub> 253.1223, found [M+H]<sup>+</sup> 253.1222.



**2ia** White solid; Yield 60%; Mp 150-151 °C [lit<sup>5</sup> mp 140-147°C]; IR (neat)  $v_{max}$  3029, 2850, 2566, 2360, 1696, 1466, 1292, 829, 760 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.75 (s, 1H), 7.31 (m, 7H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 173.1, 141.0, 140.5, 137.1, 132.9, 131.1, 129.1, 128.6, 128.1, 127.2, 20.9; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>11</sub>O<sub>2</sub> 211.0765, found [M-H]<sup>-</sup> 211.0765.



**2ic** White solid; Yield 70%; Mp 81-84 °C; IR (neat)  $v_{max}$  3056, 2921, 2360, 2341, 1696, 1292, 760, 698, cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.38 (m, 10H), 7.28 (d, *J* = 8 Hz, 1H), 7.24 (m, 1H), 2.14 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 174.2, 140.3, 139.4, 138.8 137.2, 135.6, 132.9, 131.2, 129.2, 128.8, 128.4, 128.4, 128.1, 127.4, 20.4; HRMS (ESI) *m/z* calcd for C<sub>20</sub>H<sub>16</sub>NaO<sub>2</sub> 311.1043, found [M+Na]<sup>+</sup> 311.1041.



**2j** White solid; Yield 81%; mp 182 °C; IR (neat)  $v_{max}$  2961, 2867, 2650, 2536, 1678, 1583, 1442, 1406, 1287, 1176, 1086, 950, 823, 763, 694 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 7.98$  (s, 1H), 7.60 (dd, J = 8, 2 Hz, 1H), 7.35 (m, 6H), 1.39 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 174.00$ , 150.40, 141.11, 140.57, 131.07, 129.29, 128.96, 128.61, 128.09, 127.69, 127.21, 34.72, 31.29; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub> 253.1234, found [M-H]<sup>-</sup> 253.1230.



**2k** White solid; Yield 58%; Mp 168-170 °C; IR (neat)  $v_{max}$  2921, 2361, 2342, 1697, 1478, 1307, 1251, 902, 956, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.36 (m, 5H), 7.00 (d, *J* = 8 Hz, 1H), 6.89 (d, *J* = 8 Hz, 1H), 4.41-4.31 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 171.1, 142.9, 141.0, 139.8, 133.8, 128.4, 128.3, 127.4, 122.8, 121.5, 118.8, 64.7, 64.2; HRMS (ESI) *m/z* calcd for C<sub>15</sub>H<sub>12</sub>NaO<sub>4</sub> 279.0628, found [M+Na]<sup>+</sup> 279.0629.



**21** White solid; Yield 69%; Mp 139-141 °C; IR (neat)  $v_{max}$  2920, 2359, 2341, 1691, 1449, 1291, 1241, 913, 828, 772 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.37 (m, 5H), 7.22-7.13 (m, 2H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 173.7, 160.3 (d, *J* = 244 Hz), 139.8, 136.0 (d, *J* = 4 Hz), 134.0 (d, *J* = 4 Hz), 128.9 (d, *J* = 8 Hz), 128.4, 128.3, 127.6, 122.7 (d, *J* = 19 Hz), 116.5 (d, *J* = 23 Hz), 11.9; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  = -117.4; HRMS (ESI) *m*/*z* calcd for C<sub>14</sub>H<sub>10</sub>FO<sub>2</sub> 229.0670, found [M-H]<sup>-</sup>229.0671.



**2m** White solid; Yield 68%; Mp 140-141 °C; IR (neat)  $v_{max}$  3191, 2360, 2341, 1687, 1445, 1277, 1196, 949, 823, 747 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.45-7.38 (m, 5H), 7.24-7.20 (m, 1H), 7.15 (t, *J* = 9 Hz, 1H), 2.41 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 173.1, 157.7 (d, *J* = 243 Hz), 135.7, 134.3 (d, *J* = 3 Hz), 133.2, 130.8 (t, *J* = 4 Hz), 129.5, 128.3, 128.2, 127.5 (d, *J* = 18 Hz), 117.1 (d, *J* = 23 Hz), 19.3; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  = -119.5; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>15</sub>FNO<sub>2</sub> 248.1081, found [M+NH<sub>4</sub>]<sup>+</sup> 248.1086.



**2n** White solid; Yield 66%; Mp 165-168 °C; IR (neat)  $v_{max}$  2922, 2629, 2359, 2342, 1691, 1447, 1279, 1114, 908, 823, 767 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.47 (d, *J* = 8 Hz, 1H), 7.38 (s, 5H), 7.17 (d, *J* = 8 Hz, 1H), 2.45 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 174.2, 139.6, 138.5, 134.2, 134.0, 133.0, 130.5, 128.6, 128.5, 128.3, 127.9, 17.5; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>10</sub>ClO<sub>2</sub> 245.0375, found [M-H]<sup>-</sup> 245.0373.



**20** White solid; Yield 43%; Mp 157-163 °C; IR (neat)  $v_{max}$  2919, 2625, 2360, 2342, 1683, 1439, 1274, 943, 847, 698 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.43 (d, *J* = 8 Hz, 1H), 7.41-7.37 (m, 3H), 7.28 (m, 2H), 7.16 (d, *J* = 8 Hz, 1H), 2.36 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 172.9, 137.9, 137.0, 135.0, 133.5, 131.1, 130.6, 130.5, 129.5, 128.1, 128.0, 19.4; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>10</sub>ClO<sub>2</sub> 245.0375, found [M-H]<sup>-</sup> 245.0374.



**2p** White solid; Yield 84% (*ortho*-phenylbenzoic acid used as substrate); 64% (*ortho*-chlorobenzoic acid used as substrate); Mp 189-191 °C [lit<sup>6</sup> mp 188-189 °C]; IR (neat)  $v_{max}$  2360, 1691, 1458, 1297, 1134, 916, 815, 757, 696 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 7.52$  (t, J = 8 Hz, 1H), 7.38 (m, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 174.7$ , 140.3, 131.8, 129.7, 129.0, 128.5, 128.4, 127.7; HRMS (ESI) *m/z* calcd for C<sub>19</sub>H<sub>13</sub>O<sub>2</sub> 273.0921, found [M-H]<sup>-</sup> 273.0919.



**2q** White solid; Yield 75%; Mp 78-82 °C; IR (neat)  $v_{max}$  2926, 1706, 1462, 1166, 1065, 760, 699 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.59-7.48 (m, 1H), 7.46-7.34 (m, 7H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ = 170.4, 146.1, 142.4, 138.8, 131.0, 128.6, 128.3, 128.3, 127.1, 121.7 (q, *J* = 170 Hz), 119.2; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  = -57.17; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>10</sub>F<sub>3</sub>O<sub>3</sub> 283.0577, found [M+H]<sup>+</sup> 283.0588.



**2r** White solid; Yield 81%; Mp 153-156 °C; IR (neat)  $v_{max}$  2919, 3850, 2360, 2341, 1700, 1326, 1292, 1170, 1118, 938, 762, 702 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, *J* = 7.1 Hz, 1H), 7.60 (q, *J* = 7.7 Hz, 2H), 7.41 (t, *J* = 4.7 Hz, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 172.2, 140.0 (d, *J* = 245 Hz), 133.7, 130.4, 129.8, 128.6, 128.5, 128.3, 127.5 (q, *J* = 32 Hz), 125.1 (q, *J* = 5 Hz), 123.4 (q, *J* = 272 Hz); <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  = -59.34; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>8</sub>F<sub>3</sub>O<sub>2</sub> 265.0482, found [M-H]<sup>-</sup> 265.0479.



**2s** White solid; Yield 54%; Mp 203-217 °C [lit<sup>7</sup> mp 223-224 °C]; IR (neat)  $v_{max}$  2919, 1287, 1240, 1072, 759, 745, 698 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.10$  (d, J = 8 Hz, 1H), 7.99 (d, J = 8 Hz, 1H), 7.92 (d, J = 8 Hz, 1H), 7.64-7.52 (m, 5H), 7.49-7.42 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 174.8$ , 140.7, 138.4, 132.3, 130.4, 129.7, 128.8, 128.7, 128.6, 128.3, 127.9, 127.7, 127.6, 126.5, 125.1; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>13</sub>O<sub>2</sub> 249.0910, found [M+H]<sup>+</sup> 249.0904.



**2t** White solid; Yield 57%; Mp 146-148 °C; IR (neat)  $v_{max}$  2924, 2360, 2341, 1715, 1636, 1259, 1368, 1259, 1118, 1017, 858, 758, 701 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.45-7.33 (m, 6H), 6.95 (d, *J* =

8 Hz, 2H), 3.91 (s, 3H), 3.64 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 177.9, 157.9, 144.0, 140.9, 129.2, 128.3, 128.1, 127.3, 122.4, 120.7, 109.3, 55.8, 33.3; HRMS (ESI) *m/z* calcd for C<sub>15</sub>H<sub>13</sub>O<sub>3</sub> 241.0870, found [M-H]<sup>-</sup> 241.0868.

## References

- [1] T. Fukuyama, S. Maetani, K. Miyagawa, I. Ryu, Org. Lett. 2014, 16, 3216-3219.
- [2] Z. Wu, S. Chen, C. Hu, Z. Li, H. Xiang, X. Zhou, ChemCatChem, 2013, 5, 2839-2842.
- [3] A. Schaarschmidt, J. Herzenberg, Chem. Ber. 1920, 53, 1388-1398.
- [4] R. Huisgen, H. Rist, Justus Liebigs Ann. Chem. 1955, 594, 137-158.
- [5] Q. Gu, H. H. Al Mamari, K. Graczyk, E. Diers, L. Ackermann, Angew. Chem. 2014, 126, 3949-3952; Angew. Chem. Int. Ed. 2014, 53, 3868-3871.
- [6] D. Tilly, S. S. Samanta, A.-S. Castanet, A. De, J. Mortier, Eur. J. Org. Chem. 2006, 2006, 174-182.
- [7] K. Bowden, K. D. F. Ghadir, J. Chem. Soc., Perkin Trans. 2, 1990, 1329-1332.

Part II: NMR spectra









0.000









1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1, 100 1,





























-3, 919

000 .000







S19



S20







- 117.370













0.000





# 



S31

