Organocatalytic Regioselective, Diastereoselective, and Enantioselective Annulation of Cyclic 1-Azadiene with γ -Nitro Ketone via 3,4-Cyclization

Lu Yu[†], Yuyu Cheng[†], Fei Qi, Rou Li, Pengfei Li*

Department of Chemistry, South University of Science and Technology of China, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, P. R. China, 518055. Fax: +86-755-88018304. E-mail: <u>lipf@sustc.edu.cn</u>, <u>flyli1980@gmail.com</u>

[†] Contributed equally to this work

Supporting Information

Contents

Experimental section	S2
Compounds characterization	S 3
NMR spectra of compounds	S8
Chiral HPLC chromatograms	S24
Crystal structure and data for compound 3fa	S30

Experimental section

General

All reactions were carried out with dry, freshly distilled solvents in anhydrous conditions. Toluene and THF were distilled from sodium, while dichloromethane was distilled from CaH₂ immediately prior to use. All chemicals were used without further purification as commercially available unless otherwise noted. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel (300–400 mesh). NMR (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) spectra were recorded in CDCl₃ or Acetone with TMS as the internal standard. Chemical shifts are reported in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High resolution mass spectral (HRMS) analyses were measured using ESI techniques. Melting points were determined in a hanon auto melting point system (MP 450).

General Procedure for the Reaction

In a sealed tube, cyclic 1-azadiene **1** (0.2 mmol), γ -nitro ketone **2** (0.4 mmol), (DHQ)₂HPAL (10 mol %) were mixed in CHCl₃ (0.5 mL) and stirred at room temperature for the time indicated in the tables. After removal of the solvent, the crude residue was purified by column chromatography (petroleum ether/ethyl acetate as eluant) on silica gel to give the corresponding product **3**.

Compounds characterization

3-((*1S*,*2S*,*5R*,*6S*)-**2**-hydroxy-**2**-methyl-**5**-nitro-**6**-phenylcyclohexyl)benzo[d]isothia zole 1,1-dioxide (3aa)

88 % yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.73 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.52-7.48 (m, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 7.2 Hz, 2H), 7.06 (t, J = 7.8 Hz, 2H), 6.93 (t, J = 7.2 Hz, 1H), 5.12-5.05 (m, 1H), 4.14 (t, J = 11.8 Hz, 1H), 3.97 (d, J = 2.4 Hz, 1H), 3.40 (d, J = 12.0 Hz, 1H), 2.82-2.72 (m, 1H), 2.36-2.31 (m, 1H), 2.20-2.15 (m, 1H), 1.81-1.72 (m, 1H), 1.18 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 177.8, 138.2, 135.9,

134.2, 133.6, 131.0, 129.1, 128.4, 124.1, 122.6, 88.6, 70.4, 51.3, 47.4, 37.2, 28.8, 27.1; HRMS (ESI): m/z calcd for $C_{20}H_{21}N_2SO_5 [M+H]^+$ 401.1166, Found 401.1161; HPLC conditions: Daicel Chiralpak AD-3 column, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 16.431 min, t_R (major) = 22.444 min, 93% ee.

3-((*1S*,*2S*,*5R*,*6S*)-6-(4-fluorophenyl)-2-hydroxy-2-methyl-5-nitrocyclohexyl)benzo [d]isothiazole 1,1-dioxide (3ba)

94 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 7.6 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 7.58-7.54 (m, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.19-7.16 (m, 2H), 6.77 (t, J = 8.6 Hz, 2H), 5.05-4.98 (m, 1H), 4.15 (t, J = 11.6 Hz, 1H), 3.85 (d, J = 2.8 Hz, 1H), 3.38 (d, J = 12.0 Hz, 1H), 2.81-2.71 (m, 1H), 2.37-2.31 (m, 1H), 2.21-2.16 (m, 1H), 1.81-1.72 (m, 1H), 1.18 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 177.5, 163.5, 161.0, 138.4, 134.5, 133.8,

131.8, 131.7, 130.9, 124.0, 122.9, 116.2, 116.0, 88.8, 70.4, 51.3, 46.6, 37.2, 28.9, 27.1; HRMS (ESI): m/z calcd for $C_{20}H_{20}FN_2SO_5 [M+H]^+$ 419.1071, Found 419.1065; HPLC conditions: Daicel Chiralpak AD-3 column, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 22.087 min, t_R (major) = 31.601 min, 86% ee.

3-((1S,2S,5R,6S)-6-(4-chlorophenyl)-2-hydroxy-2-methyl-5-nitrocyclohexyl)benzo [d]isothiazole 1,1-dioxide (3ca)

94 % yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.79 (d, J = 7.6 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.59-7.55 (m, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 5.04-4.97 (m, 1H), 4.15 (t, J =11.6 Hz, 1H), 3.83 (d, J = 2.0 Hz, 1H), 3.39 (d, J = 11.6 Hz, 1H), 2.81-2.70 (m, 1H), 2.37-2.31 (m, 1H), 2.21-2.16 (m, 1H), 1.81-1.72 (m, 1H), 1.18 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 177.3, 138.4, 134.5, 134.3, 133.9,

130.9, 129.3, 123.0, 88.6, 70.3, 51.1, 46.7, 37.2, 28.9, 27.1; HRMS (ESI): m/z calcd for $C_{20}H_{20}CIN_2SO_5$ [M+H]⁺ 435.0776, Found 435.0770; HPLC conditions: Daicel Chiralpak AD-3 column, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 15.510 min, t_R (major) = 18.206 min, 85% ee.

3-((*1S*,*2S*,*5R*,*6S*)-6-(4-bromophenyl)-2-hydroxy-2-methyl-5-nitrocyclohexyl)benz o[d]isothiazole 1,1-dioxide (3da)

84 % yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.79 (d, J = 7.2 Hz, 1H), 7.68 (t, J = 7.4 Hz,

1H), 7.57 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.21 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 5.04-4.97 (m, 1H), 4.13 (t, J = 11.6 Hz, 1H), 3.83 (d, J = 2.4 Hz, 1H), 3.40 (d, J = 12.0 Hz, 1H), 2.80-2.70 (m, 1H), 2.36-2.32 (m, 1H), 2.20-2.15 (m, 1H), 1.81-1.72 (m, 1H), 1.18 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 177.4, 138.3, 135.1, 134.5, 133.9, 132.3, 130.9, 124.0, 123.0, 122.4, 88.6, 70.3, 51.0, 46.7, 37.1, 28.9, 27.0; HRMS

(ESI): m/z calcd for C₂₀H₂₀BrN₂SO₅ $[M+H]^+$ 481.0250, Found 481.0241; HPLC conditions: Daicel Chiralpak AS-H column, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (major) = 29.534 min, t_R (minor) = 36.298 min, 81% ee.

3-((*1S*,*2S*,*5R*,*6S*)-**2**-hydroxy-**2**-methyl-**5**-nitro-**6**-(**3**-nitrophenyl)cyclohexyl)benzo[d]isothiazole 1,1-dioxide (3ea)

47 % yield; ¹H NMR (400 MHz, CDCl₃): δ 8.19 (s, 1H), 7.88-7.86 (m, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 7.60-7.56 (m, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 11.8 Hz, 1H), 5.07-5.00 (m, 1H), 4.34 (t, J = 11.8 Hz, 1H), 3.67 (d, J = 2.4 Hz, 1H), 3.51 (d, J = 11.6 Hz, 3H), 2.85-2.74 (m, 1H), 2.44-2.38 (m, 1H), 2.27-2.21 (m, 1H), 1.89-1.81 (m, 1H), 1.22 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm)

176.5, 148.3, 138.6, 138.4, 134.8, 134.1, 130.8, 130.5, 123.8, 123.5, 123.1, 88.7, 70.4, 50.8, 46.8, 37.2, 28.9, 27.1; HRMS (ESI): m/z calcd for $C_{20}H_{20}N_3SO_7$ [M+H]⁺ 446.1016, Found 446.1010; HPLC conditions: Daicel Chiralpak ID-3 column, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 224$ nm, retention time: t_R (minor) = 16.008 min, t_R (major) = 22.192 min, 95% ee.

3-((*1S*,*2S*,*5R*,*6S*)-6-(**3**-bromophenyl)-2-hydroxy-2-methyl-5-nitrocyclohexyl)benz o[d]isothiazole 1,1-dioxide (3fa)

43 %; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 7.2 Hz, 1H), 7.68-7.64 (m, 1H), 7.61-7.57 (m, 1H), 7.39 (br s, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.09-7.07 (m, 2H), 6.93 (t, J = 7.8 Hz, 1H), 5.03-4.96 (m, 1H), 4.13 (t, J = 11.8 Hz, 1H), 3.91 (d, J = 2.8 Hz, 1H), 3.34 (d, J = 12.0 Hz, 1H), 2.82-2.71 (m, 1H), 2.40-2.34 (m, 1H), 2.22-2.17 (m, 1H), 1.80-1.71 (m, 1H), 1.20 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 177.2, 138.3, 134.4, 133.6, 131.5,

130.9, 130.8, 123.9, 122.9, 88.3, 70.3, 51.2, 47.0, 37.3, 28.8, 27.1; HRMS (ESI): m/z calcd for $C_{20}H_{20}BrN_2SO_5$ [M+H]⁺ 481.0250, Found 481.0244; HPLC conditions: Daicel Chiralpak ID-3 column, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 23.155 min, t_R (major) = 30.849 min, 97% ee.

3-((*1S*,2*S*,5*R*,6*S*)-2-hydroxy-2-methyl-5-nitro-6-(o-tolyl)cyclohexyl)benzo[d]isothi azole 1,1-dioxide (3ga)

83 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 7.2 Hz, 1H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.56-7.52 (m, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.89-6.82 (m, 2H), 5.02-4.95 (m, 1H), 4.53 (t, *J* = 11.6 Hz, 1H), 3.97 (d, *J* = 2.8 Hz, 1H), 3.40 (d, *J* = 12.0 Hz, 1H), 2.83-2.72 (m, 1H), 2.37-2.32 (m, 4H), 2.21-2.16 (m, 1H), 1.80-1.71 (m, 1H), 1.17 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 177.4, 138.0, 134.3, 133.6, 131.8, 130.9, 128.2,

126.2, 125.4, 124.4, 122.6, 89.7, 70.5, 51.9, 41.2, 37.3, 28.7, 27.4, 19.6; HRMS (ESI): m/z calcd for $C_{21}H_{23}N_2SO_5$ [M+H]⁺ 415.1322, Found 415.1316; HPLC conditions: Daicel Chiralpak ID-3 column, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 9.192 min, t_R (major) = 13.991 min, 80% ee.

6-bromo-3-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-2-methyl-5-nitro-6-phenylcyclohexyl)benzo [d]isothiazole 1,1-dioxide (3ha)

76 % yield; ¹H NMR (400 Hz, CDCl₃): δ (ppm) 7.86 (d, J = 1.2 Hz, 1H), 7.62-7.60 (m, 1H), 7.17-7.07 (m, 5H), 6.99 (t, J = 7.2 Hz, 1H), 5.09-5.02 (m, 1H), 4.12 (t, J = 11.8 Hz, 1H), 3.88 (d, J = 2.8 Hz, 1H), 3.32 (d, J = 11.6 Hz, 1H), 2.81-2.71 (m, 1H), 2.37-2.33 (m, 1H), 2.20-2.15 (m, 1H), 1.79-1.70 (m, 1H), 1.17 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 177.2, 139.9, 136.7, 135.8, 130.2, 129.7, 129.2, 129.1, 128.6, 126.2, 124.9, 88.5, 70.4, 51.5, 47.3,

37.2, 28.8, 27.1; HRMS (ESI): m/z calcd for $C_{20}H_{20}BrN_2SO_5$ [M+H]⁺ 481.0250, Found 481.0245; HPLC conditions: Daicel Chiralpak ID-3 column, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 244$ nm, retention time: t_R (minor) = 8.691 min, t_R (major) = 14.456 min, 95% ee.

6-bromo-3-((*1S*,*2S*,*5R*,*6S*)-6-(3-bromophenyl)-2-hydroxy-2-methyl-5-nitrocyclohe xyl)benzo[d]isothiazole 1,1-dioxide (3ia)

68 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 1.2 Hz, 1H), 7.72-7.70 (m, 1H), 7.38 (br s, 1H), 7.21-7.06 (m, 3H), 6.96 (t, J = 7.8 Hz, 1H), 5.02-4.95 (m, 1H), 4.11 (t, J = 11.8 Hz, 1H), 3.77 (d, J = 2.4 Hz, 1H), 3.33 (d, J = 12.0 Hz, 1H), 2.79-2.69 (m, 1H), 2.39-2.33 (m, 1H), 2.21-2.16 (m, 1H), 1.79-1.71 (m, 1H), 1.18 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 176.6, 140.0, 138.3, 136.8, 131.7, 130.9, 130.5, 129.6, 126.4, 124.8,

123.2, 88.5, 70.4, 51.5, 47.3, 37.2, 28.8, 27.1; HRMS (ESI): m/z calcd for $C_{20}H_{19}Br_2N_2SO_5$ [M+H]⁺ 556.9376, Found 556.9368; HPLC conditions: Daicel Chiralpak ID-3 column, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, λ = 244 nm, retention time: t_R (minor) = 7.145 min, t_R (major) = 9.796 min, 90% ee.

6-bromo-3-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-6-(3-methoxyphenyl)-2-methyl-5-nitrocyclo hexyl)benzo[d]isothiazole 1,1-dioxide (3ja)

68 % yield; ¹H NMR (400 MHz, CDCl₃): δ7.87 (d, J = 1.6 Hz, 1H), 7.64-7.61 (m, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.00 (t, J = 7.8 Hz, 1H), 6.78 (d, J = 7.2 Hz, 1H), 6.64 (br s, 1H), 6.53-6.50 (m, 1H), 5.09-5.02 (m, 1H), 4.09 (t, J = 11.6 Hz, 1H), 3.87 (d, J = 2.8 Hz, 1H), 3.65 (s, 3H), 3.34 (d, J = 12.0Hz, 1H), 2.79-2.68 (m, 1H), 2.35-2.31 (m, 1H), 2.18-2.13 (m, 1H), 1.78-1.68 (m, 1H), 1.16 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 177.3, 160.0,

139.8, 137.4, 136.7, 130.2, 129.7, 126.1, 125.0, 88.4, 70.4, 55.3, 51.4, 47.4, 37.2, 28.7, 27.1; HRMS (ESI): m/z calcd for $C_{21}H_{22}BrN_2SO_6$ [M+H]⁺ 511.0356, Found 511.0349; HPLC conditions: Daicel Chiralpak ID-3 column, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 224$ nm, retention time: t_R (minor) = 31.243 min, t_R (major) = 38.039 min, 98% ee.

5-methyl-3-((1S,2S,5R,6S)-2-hydroxy-2-methyl-5-nitro-6-phenylcyclohexyl)benzo

[d]isothiazole 1,1-dioxide (3ka)

¹H NMR (400 Hz, CDCl3): δ (ppm) 7.60 (d, J = 7.6 Hz, 1H), 7.38-7.35 (m, 1H), 7.19-7.13 (m, 2H), 7.09-7.04 (m, 2H), 6.96-6.93 (m, 2H), 5.12-5.05 (m, 1H), 4.16-4.08 (m, 2H), 3.31 (d, J = 11.6 Hz, 1H), 2.83-2.73 (m, 1H), 2.37-2.28 (m, 4H), 2.21-2.16 (m, 1H), 1.80-1.71 (m, 1H), 1.20 (s, 3H). ¹³C NMR (100 Hz, CDCl3): δ (ppm) 178.0, 144.9, 135.9, 135.4, 134.6, 131.5, 128.9, 128.3, 124.7, 122.3, 88.5, 77.4, 70.3, 51.2, 47.4, 37.2, 28.8, 27.1, 21.7. HRMS (ESI): m/z

calcd for C₂₁H₂₃N₂SO₅ [M+H] 415.1322, Found 415.1313; HPLC conditions: Daicel Chiralpak AD-3 column, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 21.147 min, t_R (major) = 27.136 min, 84% ee.

4-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-2-methyl-5-nitro-6-phenylcyclohexyl)benzo[e][1,2,3]o xathiazine 2,2-dioxide (3la)

80 % yield; ¹H NMR (400 Hz, CDCl₃): δ (ppm) 7.62-7.57 (m, 1H), 7.53-7.51 (m, 1H), 7.27-7.23 (m, 1H), 7.15-7.05 (m, 5H), 6.97 (t, J = 7.4 Hz, 1H), 5.05-4.98 (m, 1H), 4.15 (t, J = 11.6 Hz, 1H), 3.99 (d, J = 2.8 Hz, 1H), 3.58 (d, J = 12.0 Hz, 1H), 2.82-2.71 (m, 1H), 2.35-2.30 (m, 1H), 2.19-2.14 (m, 1H), 1.79-1.70 (m, 1H), 1.20 (s, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 182.2, 153.2, 137.9, 135.5, 129.0, 128.3, 128.2, 126.0, 119.5, 117.6, 88.9, 70.7, 53.3,

47.5, 37.6, 29.0, 27.1; HRMS: exact mass calculated for $C_{20}H_{21}N_2SO_6$ [M+H]⁺ requires m/z 417.1115, found m/z 417.1108; HPLC conditions: Daicel Chiralpak ID-3 column, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 9.633 min, t_R (major) = 19.291 min, 80% ee.

3-((*1S*,*2S*,*5R*,*6S*)-**2**-ethyl-**2**-hydroxy-**5**-nitro-**6**-phenylcyclohexyl)benzo[d]isothiazo le 1,1-dioxide (3ab)

95 %; ¹H NMR (400 MHz, CDCl₃): δ7.73 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.24-7.17 (m, 3H), 7.05 (t, J = 7.6 Hz, 2H), 6.92 (t, J = 7.2 Hz, 1H), 5.12-5.05 (m, 1H), 4.17 (t, J = 11.4 Hz, 1H), 3.85 (d, J = 2.8 Hz, 1H), 3.41 (d, J = 12.0 Hz, 1H), 2.81-2.70 (m, 1H), 2.41-2.35 (m, 1H), 2.23-2.18 (m, 1H), 1.72-1.63 (m, 1H), 1.48-1.37 (m, 2H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 178.1, 138.2, 135.9, 134.1,

133.5, 130.9, 129.1, 128.3, 124.1, 122.6, 88.5, 73.1, 50.3, 47.6, 34.3, 33.1, 26.9, 8.1; HRMS (ESI): m/z calcd for $C_{21}H_{23}N_2SO_5$ [M+H]⁺ 415.1322, Found 415.1317; HPLC conditions: Daicel Chiralpak OD-H column, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 8.654 min, t_R (major) = 9.782 min, 91% ee.

3-((*1S*,*2S*,*5R*,*6S*)-**2**-ethyl-**2**-hydroxy-**5**-nitro-**6**-(**3**-nitrophenyl)cyclohexyl)benzo[d]i sothiazole 1,1-dioxide (3eb)

43 % yield; ¹H NMR (400 MHz, CDCl₃): $\delta 8.18$ (s, 1H), 7.86-7.83 (m, 1H), 7.76 (d, J = 7.2 Hz, 1H), 7.66-7.63 (m, 1H), 7.58-7.54 (m, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 5.07-5.00 (m, 1H), 4.36 (t, J = 11.6 Hz, 1H), 3.56-3.50 (m, 2H), 2.82-2.72 (m, 1H), 2.47-2.41 (m, 1H), 2.30-2.25 (m, 1H), 1.77-1.69 (m, 1H), 1.43 (q,

J = 11.6 Hz, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 176.9, 138.6, 138.3, 134.7, 133.9, 130.7, 130.5, 123.7, 123.5, 123.1, 88.6, 73.1, 49.9, 47.2, 34.4, 33.0, 26.9, 7.97; HRMS (ESI): m/z calcd for C₂₁H₂₂N₃SO₇ [M+H]⁺ 460.1173, Found 460.1164; HPLC conditions: Daicel Chiralpak ID-3 column, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 25.293 min, t_R (major) = 38.645 min, 93% ee.

3-((*1S*,2*S*,5*R*,6*S*)-6-(3-bromophenyl)-2-ethyl-2-hydroxy-5-nitrocyclohexyl)benzo[d]isothiazole 1,1-dioxide (3fb)

65 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 7.2 HZ, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.39 (br s, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 7.2 Hz, 2H), 6.91 (t, J = 7.8 Hz, 1H), 5.04-4.97 (m, 1H), 4.15 (t, J = 11.6 Hz, 1H), 3.76 (d, J = 2.4 Hz, 1H), 3.38 (d, J =

12.0 Hz, 1H), 2.80-2.69 (m, 1H), 2.42-2.36 (m, 1H), 2.24-2.19 (m, 1H), 1.71-1.62 (m, 1H), 1.52-1.36 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 Hz, CDCl₃): δ (ppm) 177.5, 138.4, 138.3, 134.4, 133.5, 131.5, 130.8, 124.0, 122.8, 88.3, 73.0, 50.1, 47.3, 34.3, 33.1, 26.9, 8.07; HRMS (ESI): m/z calcd for C₂₁H₂₂BrN₂SO₅ [M+H]⁺ 495.0407, Found 495.0400; HPLC conditions: Daicel Chiralpak ID-3 column, *n*-hexane/2-propanol = 70/30,

flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 21.364 min, t_R (major) = 30.498 min, 98% ee.

3-((*1S*,*2S*,*5R*,*6S*)-**2**-ethyl-**2**-hydroxy-**5**-nitro-**6**-(p-tolyl)cyclohexyl)benzo[d]isothiaz ole **1**,**1**-dioxide (3mb)

88 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.2 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.05 (d, *J* = 7.2 Hz, 2H), 6.85 (t, *J* = 8.0 Hz, 1H), 5.07-5.00 (m, 1H), 4.13 (t, *J* = 11.6 Hz, 1H), 3.84 (d, *J* = 2.8 Hz, 1H), 3.39 (d, *J* = 12.0 Hz, 1H), 2.80-2.69 (m, 1H), 2.38-2.33 (m, 1H), 2.22-2.17 (m, 1H), 2.03 (s, 3H), 1.69-1.61 (m, 1H), 1.47-1.35 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 Hz, CDCl₃): δ

(ppm) 178.2, 138.2, 138.1, 134.0, 133.5, 132.7, 130.9, 129.7, 124.2, 122.6, 88.8, 73.1, 50.4, 47.2, 34.3, 33.1, 26.9, 20.9, 8.1; HRMS (ESI): m/z calcd for $C_{22}H_{25}N_2SO_5$ [M+H]⁺ 429.1479, Found 429.1475; HPLC conditions: Daicel Chiralpak OD-H column, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, λ = 224 nm, retention time: t_R (minor) = 12.924 min, t_R (major) = 14.562 min, 83% ee.

NMR Spectra of compounds

3-((*1S*,*2S*,*5R*,*6S*)-**6-**(**4-**fluorophenyl)-**2-**hydroxy-**2-**methyl-**5-**nitrocyclohexyl)benzo [d]isothiazole 1,1-dioxide (3ba)

3-((*1S*,*2S*,*5R*,*6S*)-**6-**(**4-**chlorophenyl)-**2-**hydroxy-**2-**methyl-**5-**nitrocyclohexyl)benzo [d]isothiazole 1,1-dioxide (3ca)

3-((*1S*,*2S*,*5R*,*6S*)-**6-**(**4-bromophenyl**)-**2-hydroxy-2-methyl-5-nitrocyclohexyl**)benz o[d]isothiazole 1,1-dioxide (3da)

3-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-2-methyl-5-nitro-6-(3-nitrophenyl)cyclohexyl)benzo[d]isothiazole 1,1-dioxide (3ea)

S12

100

50

150

200

ppm (t1)

0

3-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-2-methyl-5-nitro-6-(o-tolyl)cyclohexyl)benzo[d]isothi azole 1,1-dioxide (3ga)

S16

5-methyl-3-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-2-methyl-5-nitro-6-phenylcyclohexyl)benzo [d]isothiazole 1,1-dioxide (3ka)

3-((*1S*,*2S*,*5R*,*6S*)-2-ethyl-2-hydroxy-5-nitro-6-phenylcyclohexyl)benzo[d]isothiazo le 1,1-dioxide (3ab)

1.03

5.0

6.0

1.00

4.0

2.00

1.00

8.0

9.0 ppm (t1) 7.0

1.12 1.03

1.05

3.0

1.03

2.0

2.01

2.99

1.0

0

0.0

3-((*1S*,*2S*,*5R*,*6S*)-2-ethyl-2-hydroxy-5-nitro-6-(3-nitrophenyl)cyclohexyl)benzo[d]i sothiazole 1,1-dioxide (3eb)

3-((*1S*,2*S*,5*R*,6*S*)-2-ethyl-2-hydroxy-5-nitro-6-(p-tolyl)cyclohexyl)benzo[d]isothiaz ole 1,1-dioxide (3lb)

Chiral HPLC chromatograms

3-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-2-methyl-5-nitro-6-phenylcyclohexyl)benzo[d]isothia zole 1,1-dioxide (3aa)

Racemic								hiral					
#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	16.35	16599.5	195.2	1.3159	48.925	1.001	1	16.431	2410.5	28.9	1.2781	3.511	1.082
2	23.232	17328.7	96.4	2.626	51.075	1.062	2	22.444	66251.8	393.2	2.4658	96.489	0.77

3-((*1S*,*2S*,*5R*,*6S*)-**6-**(**4-**fluorophenyl)-**2-**hydroxy-**2-**methyl-**5-**nitrocyclohexyl)benzo [d]isothiazole 1,1-dioxide (3ba)

Racemic

Chiral

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	22.029	32146.2	304.6	1.5714	49.261	0.97	1	22.087	9139.3	87.1	1.5523	6.784	0.992
2	32.442	33110.5	166.7	2.9971	50.739	0.898	2	31.601	125581	609.3	3.0207	93.216	0.66

Racemic

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	15.496	10683.8	115.3	1.3535	49.593	0.546	1	15.51	2095	28.3	1.116	7.296	0.789
2	18.609	10859	81	1.9276	50.407	0.577	2	18.206	26620.6	196.8	1.942	92.704	0.774

3-((*1S*,*2S*,*5R*,*6S*)-**6-**(**4-bromophenyl**)-**2-hydroxy-2-methyl-5-nitrocyclohexyl**)benz o[d]isothiazole 1,1-dioxide (3da)

Racemic									hiral					
	#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
	1	29.725	31041.9	176	2.6662	49.972	0.651	1	29.534	86287.2	479.5	2.7076	90.378	0.547
	2	35.316	31076.5	107.1	4.0891	50.028	0.438	2	36.298	9186.7	30.8	4.0902	9.622	0.378

3-((*1S*,2*S*,5*R*,6*S*)-2-hydroxy-2-methyl-5-nitro-6-(3-nitrophenyl)cyclohexyl)benzo[d]isothiazole 1,1-dioxide (3ea)

Racemic

Chiral

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	15.907	9407.1	98.3	1.5951	49.061	1.03	1	16.008	2549.2	24.2	1.5751	2.585	1.169
2	22.707	9767.1	55.4	2.6502	50.939	0.907	2	22.192	96053.7	572.8	2.5503	97.415	1.01

3-((*1S*,*2S*,*5R*,*6S*)-6-(3-bromophenyl)-2-hydroxy-2-methyl-5-nitrocyclohexyl)benz o[d]isothiazole 1,1-dioxide (3fa)

D	•
Race	emic
I tuot	11110

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	22.453	43213.7	245.2	2.6552	49.412	1.175	1	23.155	362.4	2.6	1.6613	1.315	1.678
2	30.779	44242.3	181.8	3.715	50.588	1.362	2	30.849	27190.1	117.4	3.5583	98.685	1.277

3-((*1S*,2*S*,5*R*,6*S*)-2-hydroxy-2-methyl-5-nitro-6-(o-tolyl)cyclohexyl)benzo[d]isothi azole 1,1-dioxide (3ga)

D	•
Pace	min
naut	

Chiral

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	9.161	33343.3	1108.9	0.4428	49.971	0.57	1	9.192	10090.1	339.5	0.4387	10.044	0.667
2	14.197	33382.4	774.9	0.6306	50.029	0.714	2	13.991	90368.1	2077.2	0.6435	89.956	0.62

6-bromo-3-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-2-methyl-5-nitro-6-phenylcyclohexyl)benzo [d]isothiazole 1,1-dioxide (3ha)

Racemic

Chiral

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	8.717	4684.3	80.5	0.926	49.504	1.518	1	8.691	352.1	5.2	0.9802	2.350	1.695
2	14.495	4778	34.9	2.0548	50.496	1.446	2	14.456	14630.7	105.3	2.2089	97.650	1.47

6-bromo-3-((*1S*,*2S*,*5R*,*6S*)-6-(3-bromophenyl)-2-hydroxy-2-methyl-5-nitrocyclohe xyl)benzo[d]isothiazole 1,1-dioxide (3ia)

D	•	
Rad	omic	•
ra	JUIIIU	

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	7.119	11836.8	391.2	0.4643	49.564	1.207	1	7.145	435.5	13	0.5061	5.124	1.097
2	9.8	12044.9	195.7	0.9169	50.436	1.195	2	9.796	8064.9	139	0.9051	94.876	1.294

6-bromo-3-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-6-(3-methoxyphenyl)-2-methyl-5-nitrocyclo hexyl)benzo[d]isothiazole 1,1-dioxide (3ja)

R	acemic		Chiral										
#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	30.397	40745	130.3	3.679	46.065	0.75	1	31.243	649.5	3.7	2.9476	0.804	3.13
2	38.279	47706.5	225.8	3.1432	53.935	1.315	2	38.039	80177.8	407.9	3.0053	99.196	1.185

5-methyl-3-((*1S*,*2S*,*5R*,*6S*)-2-hydroxy-2-methyl-5-nitro-6-phenylcyclohexyl)benzo [d]isothiazole 1,1-dioxide (3ka)

Racemic

Chiral

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	21.342	6681.9	43.9	2.5372	49.971	1.171	1	21.147	9974.6	60.9	2.7315	7.876	0.922
2	28.954	6689.6	32	3.4856	50.029	0.904	2	27.136	116664.7	541.9	3.5881	92.124	0.551

4-((*1S*,2*S*,5*R*,6*S*)-2-hydroxy-2-methyl-5-nitro-6-phenylcyclohexyl)benzo[e][1,2,3]o xathiazine 2,2-dioxide (3la)

D	•	
Pacat	mi	0
Nate		L

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	9.649	3135	126.6	0.3262	52.987	0.505	1	9.633	2967.8	136.4	0.314	9.969	0.526
2	19.425	2781.5	65.9	0.6364	47.013	0.619	2	19.291	26802.3	670.4	0.6104	90.031	0.659

3-((*1S*,*2S*,*5R*,*6S*)-**2**-ethyl-**2**-hydroxy-**5**-nitro-**6**-phenylcyclohexyl)benzo[d]isothiazo le 1,1-dioxide (3ab)

Racemic

Chiral

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	8.548	10008.9	305.3	0.5045	47.039	0.651	1	8.645	1114.8	36	0.479	4.697	0.773
2	9.845	11268.8	221.8	0.7606	52.961	0.527	2	9.782	22618.9	456.7	0.7174	95.303	0.669

3-((*1S*,2*S*,5*R*,6*S*)-2-ethyl-2-hydroxy-5-nitro-6-(3-nitrophenyl)cyclohexyl)benzo[d]i sothiazole 1,1-dioxide (3eb)

Racemic

Chiral

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	25.091	12406.3	79	2.3686	49.170	1.2	1	25.293	878.7	5.1	2.1155	3.499	1.256
2	39.14	12825	41	4.1864	50.830	1.06	2	38.645	24231.8	79.9	4.3702	96.501	1

3-((*1S*,*2S*,*5R*,*6S*)-6-(3-bromophenyl)-2-ethyl-2-hydroxy-5-nitrocyclohexyl)benzo[d]isothiazole 1,1-dioxide (3fb)

D	•
Racan	110
Naten	IIC

#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	20.868	44863.4	358	1.8519	52.205	1.592	1	21.364	452.2	3.9	1.6601	0.723	1.77
2	30.733	41072.8	210.4	2.9211	47.795	1.591	2	30.498	62074.9	312	2.9055	99.277	1.55

$\label{eq:constraint} 3-((1S,2S,5R,6S)-2-ethyl-2-hydroxy-5-nitro-6-(p-tolyl)cyclohexyl) benzo[d] isothiaz$ ole 1,1-dioxide (3lb)

Racemic

R	acemic						Chiral						
#	Time	Area	Height	Width	Area%	Symmetry	#	Time	Area	Height	Width	Area%	Symmetry
1	12.678	36919.2	709.1	0.7974	49.164	0.566	1	12.924	5264	103.5	0.8478	8.340	0.889
2	14.713	38175.2	363.2	1.7519	50.836	0.552	2	14.562	57852.6	553.3	1.7427	91.660	0.525

Crystal Structure and data for compound 3fa

Table 1. Crystal data and structure refinement for	SUSILPF4 (10 Feb 2013).
Identification code	lpf4
Empirical formula	C ₂₀ H ₁₉ Br N ₂ O5 S
Formula weight	479.34
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$a = 8.8208(3) \text{ Å}$ $\alpha = 90 ^{\circ}.$
	$b = 12.8570(4) \text{ Å} \qquad \beta = 90 \degree.$
	$c = 18.1141(5) \text{ Å}$ $\gamma = 90 ^{\circ}.$
Volume	2054.30(11) Å ³
Z	4
Density (calculated)	1.550 Mg/m ³
Absorption coefficient	2.137 mm ⁻¹
F(000)	976
Crystal size	0.46 x 0.40 x 0.32 mm ³
Theta range for data collection	1.94 to 27.39 °.
Index ranges	-11<=h<=10, -16<=k<=16, -22<=l<=23
Reflections collected	24921
Independent reflections	4619 [R(int) = 0.1516]
Completeness to theta = 27.39 $^{\circ}$	99.5 %
Absorption correction	None
Max. and min. transmission	0.7456 and 0.5966
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4619 / 0 / 307
Goodness-of-fit on F ²	0.994
Final R indices [I>2sigma(I)]	R1 = 0.0514, wR2 = 0.0608
R indices (all data)	R1 = 0.1259, wR2 = 0.0689
Absolute structure parameter	0.030(8)
Largest diff. peak and hole	0.275 and -0.347 e.Å ⁻³

Table 1. Crystal data and structure refinement for SUSTLPF4 (16 Feb 2015).