Supporting Information for

Selective thionation of naphtho[2,3-b]thiophene diimide: Tuning of the optoelectronic properties and packing structure

Wangqiao Chen,a,b Masahiro Nakano,*a Kazuo Takimiya,*a Qichun Zhangb

a Emergent Molecular Function Research Group, RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
b School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Contents
1. Optimization of conditions in the reaction of NTI and Lawesson’s reagent
2. 13C NMR spectrum of NTI
3. Calculated electron density of NDI, NTI and NDTI
4. Calculated structures of plausible intermediates in the reaction of NTI and Lawesson’s reagent
5. 1H NMR spectra of NTI-2S under different conditions
6. Preliminary data obtained from solution processed field-effect transistors based on NTI-2S
7. References
1. Optimization of conditions in the reaction of NTI and Lawesson’s reagent

Table S1. Reactions of NTI with Lawesson’s reagent.

<table>
<thead>
<tr>
<th>run</th>
<th>solvent</th>
<th>temperature (°C), time (h)</th>
<th>result</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>reflux (110 °C), 5h</td>
<td>no reaction</td>
<td>LR(^a): 4.0 eq.</td>
</tr>
<tr>
<td>2</td>
<td>xylene</td>
<td>reflux (110 °C), 5h</td>
<td>NTI-2S: trace</td>
<td>LR(^a): 4.0 eq.</td>
</tr>
<tr>
<td>3</td>
<td>xylene</td>
<td>180 °C, 5h</td>
<td>NTI-2S: 20%</td>
<td>LR(^a): 4.0 eq., Microwave irradiation in a sealed tube</td>
</tr>
<tr>
<td>4</td>
<td>xylene</td>
<td>180 °C, 2h</td>
<td>NTI-2S: 41%</td>
<td>LR(^a): 4.0 eq., Microwave irradiation in a sealed tube</td>
</tr>
<tr>
<td>5</td>
<td>o-DCB</td>
<td>180 °C, 2h</td>
<td>NTI-2S: 6%</td>
<td>LR(^a): 4.0 eq.</td>
</tr>
<tr>
<td>6</td>
<td>o-DCB</td>
<td>160 °C, 1h</td>
<td>NTI-2S: 45%</td>
<td>LR(^a): 4.0 eq.</td>
</tr>
<tr>
<td>7</td>
<td>o-DCB</td>
<td>160 °C, 1h</td>
<td>NTI-2S: 59%</td>
<td>LR(^a): 3.0 eq.</td>
</tr>
</tbody>
</table>

\(^a\) LR: Lawesson’s reagent.

2. \(^{13}\)C NMR spectrum of NTI
Figure S1. 13C NMR spectrum of NTI.

3. Calculated electron density of NDI, NTI and NDTIS1

![Diagram showing electron density](image1)

Figure S2. Calculated electron density of NDI, NTI and NDTI (DFT B3LYP 6-31g(d)).

4. Calculated structures of plausible intermediates in the reaction of NTI and Lawesson’s reagentS2

![Diagram showing reaction](image2)

Figure S3. Plausible reaction paths of thionation and intermediates: the intermediate A is calculated to be energetically stable compared to the intermediate B by ca. 11 kcal mol$^{-1}$ (DFT B3LYP/6-31G(d)).
5. 1H NMR spectra of NTI-2S under different conditions

Figure S4. Pristine sample of NTI-2S.

Figure S5. 1H NMR spectra of NTI-2S under fluorescent light (room light) in air (1h).

Figure S6. 1H NMR spectra of NTI-2S under fluorescent light (room light) under argon atmosphere (1 day).
6. Preliminary data obtained from solution processed field-effect transistors based on NTI-2S

OFET devices based on NTI-2S were fabricated in a top-contact-bottom-gate (TCBG) configuration on a heavily doped n+-Si (100) wafer with a 200 nm thermally grown SiO₂ ($C_i = 17.3 \text{ nF cm}^{-2}$). The substrate surfaces were treated with octadecyltrichlorosilane (ODTS) as reported previously. Thin films as the active layer were spin-coated from chloroform. On top of the organic thin film, gold films (80 nm) as drain and source electrodes were deposited through a shadow mask. For a typical device, the drain-source channel length (L) and width (W) are 40 µm and 1.5 mm, respectively.

Characteristics of the OFET devices were measured at room temperature under ambient conditions with a Keithley 4200 semiconducting parameter analyzer. Field-effect mobility (μ_{FET}) was calculated in the saturation ($V_d = V_g = \pm 60$) of the I_d using the following equation,

$$I_d = C_i \mu_{\text{FET}} (W/2L) (V_g - V_{\text{th}})^2$$

where C_i is the capacitance of the SiO₂ dielectric layer, and V_g and V_{th} are the gate and threshold voltages, respectively.

Figure S8. Transfer characteristics of NTI-2S-based transistor: p-channel operation (left) and n-channel operation (right).
7. References
