Supplementary Information

Hydrothermal Conversion of Layered Hydroxide Nanosheets into
\((Y_{0.95}Eu_{0.05})PO_4\) and \((Y_{0.96-x}Tb_{0.04}Eu_x)PO_4\) (\(x = 0-0.10\)) Nanocrystals for
Red and Color-Tailorable Emissions

Zhihao Wang,a Ji-Guang Li,a,*a Qi Zhu,a Xiaodong Li,a Xudong Suna

aKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education),
School of Materials Science and Engineering, Northeastern University, Shenyang,
Liaoning 110819, China

bAdvanced Materials Processing Unit, National Institute for Materials Science,
Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

*Corresponding author

Dr. Ji-Guang Li

National Institute for Materials Science

Tel: +81-29-860-4394

E-mail: li.jiguang@nims.go.jp
Fig. S1 TG profiles of samples S1, S4 and S6.

Fig. S2 XRD patterns of S6 and its products calcined at (a) 800, (b) 900 and (c) 1000 °C for 2 h under O₂ gas flowing at 200 mL min⁻¹.
Fig. S3 Fluorescence decay curves (red) and the results of exponential fitting (black) for the 593-nm emission of S6 (a) and the products calcined from S6 at (b) 800, (c) 900 and (d) 1000 °C.

Fig. S4 Fluorescence decay curves (red) and the results of exponential fitting (black) for the 618-nm emission of S6 (a) and the products calcined from S6 at (b) 800, (c) 900 and (d) 1000 °C.
Fig. S5 CIE chromaticity diagram for the $(Y_{0.95}Eu_{0.05})PO_4$ phosphors.

Fig. S6 XRD patterns of the $(Y_{0.96-x}Tb_{0.04}Eu_x)PO_4$ phosphors calcined at 900 °C for 2 h under flowing H_2 (200 mL min$^{-1}$), with (a) $x = 0$, (b) $x = 0.02$, (c) $x = 0.04$, (d) $x = 0.06$, (e) $x = 0.08$ and (f) $x = 0.10$.
Fig. S7 PLE (a) and PL (b) spectra of the (Y\textsubscript{0.96}Tb\textsubscript{0.04})PO\textsubscript{4} phosphor calcined at 900 °C. The inset in (a) is an amplified show of the Tb3+ transitions in the 250-400 nm region.
Fig. S8 Photoluminescence excitation (PLE) spectra of the (Y$_{0.96}$,Tb$_{0.04}$Eu$_x$)PO$_4$ phosphors calcined at 900 °C, with (a) and (b) for the 618 nm red emission of Eu$^{3+}$ and the 546 nm green emission of Tb$^{3+}$, respectively.
Fig. S9 A schematic model for the energy transfer from Tb$^{3+}$ to Eu$^{3+}$.

Table S1 lattice constants a and c and cell volume V of the (Y$_{0.96-x}$Tb$_{0.04}Eu_x$)PO$_4$ solid solutions calcined at 900 °C.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>0.02</th>
<th>0.04</th>
<th>0.06</th>
<th>0.08</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2θ for 200/°</td>
<td>25.80</td>
<td>25.78</td>
<td>25.75</td>
<td>25.73</td>
<td>25.72</td>
<td>25.70</td>
</tr>
<tr>
<td>2θ for 101/°</td>
<td>19.51</td>
<td>19.50</td>
<td>19.47</td>
<td>19.46</td>
<td>19.46</td>
<td>19.44</td>
</tr>
<tr>
<td>$V/10^{-3}$ nm3</td>
<td>287.83</td>
<td>288.30</td>
<td>289.44</td>
<td>289.92</td>
<td>290.22</td>
<td>290.97</td>
</tr>
</tbody>
</table>
Fig. S10 Fluorescence decay kinetics (red) and the results of exponential fitting (black) for the 546-nm emission of Tb3+ in (Y\textsubscript{0.96-x}Tb\textsubscript{x}Eu\textsubscript{x})PO\textsubscript{4}, with (a) x = 0, (b) x = 0.02, (c) x = 0.04, (d) x = 0.06, (e) x = 0.08 and (f) x = 0.10.

Fig. S11 Fluorescence decay kinetics (red) and the results of exponential fitting (black) for the 618-nm emission of Eu3+ in (Y\textsubscript{0.96-x}Tb\textsubscript{x}Eu\textsubscript{x})PO\textsubscript{4}, with (a) x = 0.02, (b) x = 0.04, (c) x = 0.06, (d) x = 0.08 and (e) x = 0.10.